Asymptotic Behavior of Differential Powers
In this paper, we study the differential power operation on ideals. We begin with a focus on monomial ideals in characteristic 0 and find a class of ideals whose differential powers are eventually principal. We also study the containment problem between ordinary and differential powers of ideals, in...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kenkel, Jennifer McPherson, Lillian Page, Janet Smolkin, Daniel Stephenson, Monroe Yang, Fuxiang |
description | In this paper, we study the differential power operation on ideals. We begin with a focus on monomial ideals in characteristic 0 and find a class of ideals whose differential powers are eventually principal. We also study the containment problem between ordinary and differential powers of ideals, in analogy to earlier work comparing ordinary and symbolic powers of ideals. We further define a possible closure operation on ideals, called the differential closure, in analogy with integral closure and tight closure. We show that this closure operation agrees with taking the radical of an ideal if and only if the ambient ring is a simple \(D\)-module. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2605007905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605007905</sourcerecordid><originalsourceid>FETCH-proquest_journals_26050079053</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQciyuzC0oyS_JTFZwSs1ILMvML1LIT1NwyUxLSy1KzSvJTMxRCMgvTy0q5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMzA1MDA3NLA1Nj4lQBACS9MPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605007905</pqid></control><display><type>article</type><title>Asymptotic Behavior of Differential Powers</title><source>Free E- Journals</source><creator>Kenkel, Jennifer ; McPherson, Lillian ; Page, Janet ; Smolkin, Daniel ; Stephenson, Monroe ; Yang, Fuxiang</creator><creatorcontrib>Kenkel, Jennifer ; McPherson, Lillian ; Page, Janet ; Smolkin, Daniel ; Stephenson, Monroe ; Yang, Fuxiang</creatorcontrib><description>In this paper, we study the differential power operation on ideals. We begin with a focus on monomial ideals in characteristic 0 and find a class of ideals whose differential powers are eventually principal. We also study the containment problem between ordinary and differential powers of ideals, in analogy to earlier work comparing ordinary and symbolic powers of ideals. We further define a possible closure operation on ideals, called the differential closure, in analogy with integral closure and tight closure. We show that this closure operation agrees with taking the radical of an ideal if and only if the ambient ring is a simple \(D\)-module.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Kenkel, Jennifer</creatorcontrib><creatorcontrib>McPherson, Lillian</creatorcontrib><creatorcontrib>Page, Janet</creatorcontrib><creatorcontrib>Smolkin, Daniel</creatorcontrib><creatorcontrib>Stephenson, Monroe</creatorcontrib><creatorcontrib>Yang, Fuxiang</creatorcontrib><title>Asymptotic Behavior of Differential Powers</title><title>arXiv.org</title><description>In this paper, we study the differential power operation on ideals. We begin with a focus on monomial ideals in characteristic 0 and find a class of ideals whose differential powers are eventually principal. We also study the containment problem between ordinary and differential powers of ideals, in analogy to earlier work comparing ordinary and symbolic powers of ideals. We further define a possible closure operation on ideals, called the differential closure, in analogy with integral closure and tight closure. We show that this closure operation agrees with taking the radical of an ideal if and only if the ambient ring is a simple \(D\)-module.</description><subject>Asymptotic properties</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQciyuzC0oyS_JTFZwSs1ILMvML1LIT1NwyUxLSy1KzSvJTMxRCMgvTy0q5mFgTUvMKU7lhdLcDMpuriHOHroFRfmFpanFJfFZ-aVFeUCpeCMzA1MDA3NLA1Nj4lQBACS9MPI</recordid><startdate>20211130</startdate><enddate>20211130</enddate><creator>Kenkel, Jennifer</creator><creator>McPherson, Lillian</creator><creator>Page, Janet</creator><creator>Smolkin, Daniel</creator><creator>Stephenson, Monroe</creator><creator>Yang, Fuxiang</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211130</creationdate><title>Asymptotic Behavior of Differential Powers</title><author>Kenkel, Jennifer ; McPherson, Lillian ; Page, Janet ; Smolkin, Daniel ; Stephenson, Monroe ; Yang, Fuxiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26050079053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic properties</topic><toplevel>online_resources</toplevel><creatorcontrib>Kenkel, Jennifer</creatorcontrib><creatorcontrib>McPherson, Lillian</creatorcontrib><creatorcontrib>Page, Janet</creatorcontrib><creatorcontrib>Smolkin, Daniel</creatorcontrib><creatorcontrib>Stephenson, Monroe</creatorcontrib><creatorcontrib>Yang, Fuxiang</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kenkel, Jennifer</au><au>McPherson, Lillian</au><au>Page, Janet</au><au>Smolkin, Daniel</au><au>Stephenson, Monroe</au><au>Yang, Fuxiang</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Asymptotic Behavior of Differential Powers</atitle><jtitle>arXiv.org</jtitle><date>2021-11-30</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this paper, we study the differential power operation on ideals. We begin with a focus on monomial ideals in characteristic 0 and find a class of ideals whose differential powers are eventually principal. We also study the containment problem between ordinary and differential powers of ideals, in analogy to earlier work comparing ordinary and symbolic powers of ideals. We further define a possible closure operation on ideals, called the differential closure, in analogy with integral closure and tight closure. We show that this closure operation agrees with taking the radical of an ideal if and only if the ambient ring is a simple \(D\)-module.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2605007905 |
source | Free E- Journals |
subjects | Asymptotic properties |
title | Asymptotic Behavior of Differential Powers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A27%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Asymptotic%20Behavior%20of%20Differential%20Powers&rft.jtitle=arXiv.org&rft.au=Kenkel,%20Jennifer&rft.date=2021-11-30&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2605007905%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605007905&rft_id=info:pmid/&rfr_iscdi=true |