On the spectral asymptotics for the buckling problem
We provide a direct proof of Weyl’s law for the buckling eigenvalues of the biharmonic operator on domains of Rd of finite measure. The proof relies on asymptotically sharp lower and upper bounds that we develop for the Riesz mean R2(z). Lower bounds are obtained by making use of the so-called “aver...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2021-12, Vol.62 (12) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 62 |
creator | Buoso, Davide Luzzini, Paolo Provenzano, Luigi Stubbe, Joachim |
description | We provide a direct proof of Weyl’s law for the buckling eigenvalues of the biharmonic operator on domains of Rd of finite measure. The proof relies on asymptotically sharp lower and upper bounds that we develop for the Riesz mean R2(z). Lower bounds are obtained by making use of the so-called “averaged variational principle.” Upper bounds are obtained in the spirit of Berezin–Li–Yau. Moreover, we state a conjecture for the second term in Weyl’s law and prove its correctness in two special cases: balls in Rd and bounded intervals in R. |
doi_str_mv | 10.1063/5.0069529 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2604950424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604950424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d310200435368b85f2facdc2d9a1b879573afbf66aa3512710a1d4bf520727a53</originalsourceid><addsrcrecordid>eNqd0EtLxDAUBeAgCo6jC_9BwZVCx5t3upTBFwzMRtchTRvt2DY1SYX591Y74N7VXdyPc-AgdIlhhUHQW74CEAUnxRFaYFBFLgVXx2gBQEhOmFKn6CzGHQDGirEFYts-S-91FofapmDazMR9NySfGhsz58PvsxztR9v0b9kQfNnW3Tk6caaN9cXhLtHrw_3L-infbB-f13eb3FIiU15RDASAUU6FKhV3xBlbWVIVBpdKFlxS40onhDGUYyIxGFyx0nECkkjD6RJdzblT7-dYx6R3fgz9VKmJAFZwYIRN6npWNvgYQ-30EJrOhL3GoH9G0VwfRpnszWyjbZJJje__h798-IN6qBz9Bv1ZbjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604950424</pqid></control><display><type>article</type><title>On the spectral asymptotics for the buckling problem</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Buoso, Davide ; Luzzini, Paolo ; Provenzano, Luigi ; Stubbe, Joachim</creator><creatorcontrib>Buoso, Davide ; Luzzini, Paolo ; Provenzano, Luigi ; Stubbe, Joachim</creatorcontrib><description>We provide a direct proof of Weyl’s law for the buckling eigenvalues of the biharmonic operator on domains of Rd of finite measure. The proof relies on asymptotically sharp lower and upper bounds that we develop for the Riesz mean R2(z). Lower bounds are obtained by making use of the so-called “averaged variational principle.” Upper bounds are obtained in the spirit of Berezin–Li–Yau. Moreover, we state a conjecture for the second term in Weyl’s law and prove its correctness in two special cases: balls in Rd and bounded intervals in R.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0069529</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Asymptotic properties ; Buckling ; Eigenvalues ; Lower bounds ; Physics ; Upper bounds</subject><ispartof>Journal of mathematical physics, 2021-12, Vol.62 (12)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-d310200435368b85f2facdc2d9a1b879573afbf66aa3512710a1d4bf520727a53</citedby><cites>FETCH-LOGICAL-c327t-d310200435368b85f2facdc2d9a1b879573afbf66aa3512710a1d4bf520727a53</cites><orcidid>0000-0002-1804-3725 ; 0000-0002-0765-001X ; 0000-0002-1451-4358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0069529$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76131</link.rule.ids></links><search><creatorcontrib>Buoso, Davide</creatorcontrib><creatorcontrib>Luzzini, Paolo</creatorcontrib><creatorcontrib>Provenzano, Luigi</creatorcontrib><creatorcontrib>Stubbe, Joachim</creatorcontrib><title>On the spectral asymptotics for the buckling problem</title><title>Journal of mathematical physics</title><description>We provide a direct proof of Weyl’s law for the buckling eigenvalues of the biharmonic operator on domains of Rd of finite measure. The proof relies on asymptotically sharp lower and upper bounds that we develop for the Riesz mean R2(z). Lower bounds are obtained by making use of the so-called “averaged variational principle.” Upper bounds are obtained in the spirit of Berezin–Li–Yau. Moreover, we state a conjecture for the second term in Weyl’s law and prove its correctness in two special cases: balls in Rd and bounded intervals in R.</description><subject>Asymptotic properties</subject><subject>Buckling</subject><subject>Eigenvalues</subject><subject>Lower bounds</subject><subject>Physics</subject><subject>Upper bounds</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLxDAUBeAgCo6jC_9BwZVCx5t3upTBFwzMRtchTRvt2DY1SYX591Y74N7VXdyPc-AgdIlhhUHQW74CEAUnxRFaYFBFLgVXx2gBQEhOmFKn6CzGHQDGirEFYts-S-91FofapmDazMR9NySfGhsz58PvsxztR9v0b9kQfNnW3Tk6caaN9cXhLtHrw_3L-infbB-f13eb3FIiU15RDASAUU6FKhV3xBlbWVIVBpdKFlxS40onhDGUYyIxGFyx0nECkkjD6RJdzblT7-dYx6R3fgz9VKmJAFZwYIRN6npWNvgYQ-30EJrOhL3GoH9G0VwfRpnszWyjbZJJje__h798-IN6qBz9Bv1ZbjY</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Buoso, Davide</creator><creator>Luzzini, Paolo</creator><creator>Provenzano, Luigi</creator><creator>Stubbe, Joachim</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1804-3725</orcidid><orcidid>https://orcid.org/0000-0002-0765-001X</orcidid><orcidid>https://orcid.org/0000-0002-1451-4358</orcidid></search><sort><creationdate>20211201</creationdate><title>On the spectral asymptotics for the buckling problem</title><author>Buoso, Davide ; Luzzini, Paolo ; Provenzano, Luigi ; Stubbe, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d310200435368b85f2facdc2d9a1b879573afbf66aa3512710a1d4bf520727a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic properties</topic><topic>Buckling</topic><topic>Eigenvalues</topic><topic>Lower bounds</topic><topic>Physics</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buoso, Davide</creatorcontrib><creatorcontrib>Luzzini, Paolo</creatorcontrib><creatorcontrib>Provenzano, Luigi</creatorcontrib><creatorcontrib>Stubbe, Joachim</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buoso, Davide</au><au>Luzzini, Paolo</au><au>Provenzano, Luigi</au><au>Stubbe, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the spectral asymptotics for the buckling problem</atitle><jtitle>Journal of mathematical physics</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>62</volume><issue>12</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We provide a direct proof of Weyl’s law for the buckling eigenvalues of the biharmonic operator on domains of Rd of finite measure. The proof relies on asymptotically sharp lower and upper bounds that we develop for the Riesz mean R2(z). Lower bounds are obtained by making use of the so-called “averaged variational principle.” Upper bounds are obtained in the spirit of Berezin–Li–Yau. Moreover, we state a conjecture for the second term in Weyl’s law and prove its correctness in two special cases: balls in Rd and bounded intervals in R.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0069529</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1804-3725</orcidid><orcidid>https://orcid.org/0000-0002-0765-001X</orcidid><orcidid>https://orcid.org/0000-0002-1451-4358</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2021-12, Vol.62 (12) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_proquest_journals_2604950424 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Asymptotic properties Buckling Eigenvalues Lower bounds Physics Upper bounds |
title | On the spectral asymptotics for the buckling problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20spectral%20asymptotics%20for%20the%20buckling%20problem&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Buoso,%20Davide&rft.date=2021-12-01&rft.volume=62&rft.issue=12&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0069529&rft_dat=%3Cproquest_scita%3E2604950424%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604950424&rft_id=info:pmid/&rfr_iscdi=true |