On the spectral asymptotics for the buckling problem

We provide a direct proof of Weyl’s law for the buckling eigenvalues of the biharmonic operator on domains of Rd of finite measure. The proof relies on asymptotically sharp lower and upper bounds that we develop for the Riesz mean R2(z). Lower bounds are obtained by making use of the so-called “aver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2021-12, Vol.62 (12)
Hauptverfasser: Buoso, Davide, Luzzini, Paolo, Provenzano, Luigi, Stubbe, Joachim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Journal of mathematical physics
container_volume 62
creator Buoso, Davide
Luzzini, Paolo
Provenzano, Luigi
Stubbe, Joachim
description We provide a direct proof of Weyl’s law for the buckling eigenvalues of the biharmonic operator on domains of Rd of finite measure. The proof relies on asymptotically sharp lower and upper bounds that we develop for the Riesz mean R2(z). Lower bounds are obtained by making use of the so-called “averaged variational principle.” Upper bounds are obtained in the spirit of Berezin–Li–Yau. Moreover, we state a conjecture for the second term in Weyl’s law and prove its correctness in two special cases: balls in Rd and bounded intervals in R.
doi_str_mv 10.1063/5.0069529
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2604950424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604950424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-d310200435368b85f2facdc2d9a1b879573afbf66aa3512710a1d4bf520727a53</originalsourceid><addsrcrecordid>eNqd0EtLxDAUBeAgCo6jC_9BwZVCx5t3upTBFwzMRtchTRvt2DY1SYX591Y74N7VXdyPc-AgdIlhhUHQW74CEAUnxRFaYFBFLgVXx2gBQEhOmFKn6CzGHQDGirEFYts-S-91FofapmDazMR9NySfGhsz58PvsxztR9v0b9kQfNnW3Tk6caaN9cXhLtHrw_3L-infbB-f13eb3FIiU15RDASAUU6FKhV3xBlbWVIVBpdKFlxS40onhDGUYyIxGFyx0nECkkjD6RJdzblT7-dYx6R3fgz9VKmJAFZwYIRN6npWNvgYQ-30EJrOhL3GoH9G0VwfRpnszWyjbZJJje__h798-IN6qBz9Bv1ZbjY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604950424</pqid></control><display><type>article</type><title>On the spectral asymptotics for the buckling problem</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Buoso, Davide ; Luzzini, Paolo ; Provenzano, Luigi ; Stubbe, Joachim</creator><creatorcontrib>Buoso, Davide ; Luzzini, Paolo ; Provenzano, Luigi ; Stubbe, Joachim</creatorcontrib><description>We provide a direct proof of Weyl’s law for the buckling eigenvalues of the biharmonic operator on domains of Rd of finite measure. The proof relies on asymptotically sharp lower and upper bounds that we develop for the Riesz mean R2(z). Lower bounds are obtained by making use of the so-called “averaged variational principle.” Upper bounds are obtained in the spirit of Berezin–Li–Yau. Moreover, we state a conjecture for the second term in Weyl’s law and prove its correctness in two special cases: balls in Rd and bounded intervals in R.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0069529</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Asymptotic properties ; Buckling ; Eigenvalues ; Lower bounds ; Physics ; Upper bounds</subject><ispartof>Journal of mathematical physics, 2021-12, Vol.62 (12)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-d310200435368b85f2facdc2d9a1b879573afbf66aa3512710a1d4bf520727a53</citedby><cites>FETCH-LOGICAL-c327t-d310200435368b85f2facdc2d9a1b879573afbf66aa3512710a1d4bf520727a53</cites><orcidid>0000-0002-1804-3725 ; 0000-0002-0765-001X ; 0000-0002-1451-4358</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0069529$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76131</link.rule.ids></links><search><creatorcontrib>Buoso, Davide</creatorcontrib><creatorcontrib>Luzzini, Paolo</creatorcontrib><creatorcontrib>Provenzano, Luigi</creatorcontrib><creatorcontrib>Stubbe, Joachim</creatorcontrib><title>On the spectral asymptotics for the buckling problem</title><title>Journal of mathematical physics</title><description>We provide a direct proof of Weyl’s law for the buckling eigenvalues of the biharmonic operator on domains of Rd of finite measure. The proof relies on asymptotically sharp lower and upper bounds that we develop for the Riesz mean R2(z). Lower bounds are obtained by making use of the so-called “averaged variational principle.” Upper bounds are obtained in the spirit of Berezin–Li–Yau. Moreover, we state a conjecture for the second term in Weyl’s law and prove its correctness in two special cases: balls in Rd and bounded intervals in R.</description><subject>Asymptotic properties</subject><subject>Buckling</subject><subject>Eigenvalues</subject><subject>Lower bounds</subject><subject>Physics</subject><subject>Upper bounds</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLxDAUBeAgCo6jC_9BwZVCx5t3upTBFwzMRtchTRvt2DY1SYX591Y74N7VXdyPc-AgdIlhhUHQW74CEAUnxRFaYFBFLgVXx2gBQEhOmFKn6CzGHQDGirEFYts-S-91FofapmDazMR9NySfGhsz58PvsxztR9v0b9kQfNnW3Tk6caaN9cXhLtHrw_3L-infbB-f13eb3FIiU15RDASAUU6FKhV3xBlbWVIVBpdKFlxS40onhDGUYyIxGFyx0nECkkjD6RJdzblT7-dYx6R3fgz9VKmJAFZwYIRN6npWNvgYQ-30EJrOhL3GoH9G0VwfRpnszWyjbZJJje__h798-IN6qBz9Bv1ZbjY</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Buoso, Davide</creator><creator>Luzzini, Paolo</creator><creator>Provenzano, Luigi</creator><creator>Stubbe, Joachim</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1804-3725</orcidid><orcidid>https://orcid.org/0000-0002-0765-001X</orcidid><orcidid>https://orcid.org/0000-0002-1451-4358</orcidid></search><sort><creationdate>20211201</creationdate><title>On the spectral asymptotics for the buckling problem</title><author>Buoso, Davide ; Luzzini, Paolo ; Provenzano, Luigi ; Stubbe, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-d310200435368b85f2facdc2d9a1b879573afbf66aa3512710a1d4bf520727a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic properties</topic><topic>Buckling</topic><topic>Eigenvalues</topic><topic>Lower bounds</topic><topic>Physics</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buoso, Davide</creatorcontrib><creatorcontrib>Luzzini, Paolo</creatorcontrib><creatorcontrib>Provenzano, Luigi</creatorcontrib><creatorcontrib>Stubbe, Joachim</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buoso, Davide</au><au>Luzzini, Paolo</au><au>Provenzano, Luigi</au><au>Stubbe, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the spectral asymptotics for the buckling problem</atitle><jtitle>Journal of mathematical physics</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>62</volume><issue>12</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We provide a direct proof of Weyl’s law for the buckling eigenvalues of the biharmonic operator on domains of Rd of finite measure. The proof relies on asymptotically sharp lower and upper bounds that we develop for the Riesz mean R2(z). Lower bounds are obtained by making use of the so-called “averaged variational principle.” Upper bounds are obtained in the spirit of Berezin–Li–Yau. Moreover, we state a conjecture for the second term in Weyl’s law and prove its correctness in two special cases: balls in Rd and bounded intervals in R.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0069529</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-1804-3725</orcidid><orcidid>https://orcid.org/0000-0002-0765-001X</orcidid><orcidid>https://orcid.org/0000-0002-1451-4358</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2021-12, Vol.62 (12)
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_journals_2604950424
source AIP Journals Complete; Alma/SFX Local Collection
subjects Asymptotic properties
Buckling
Eigenvalues
Lower bounds
Physics
Upper bounds
title On the spectral asymptotics for the buckling problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A21%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20spectral%20asymptotics%20for%20the%20buckling%20problem&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Buoso,%20Davide&rft.date=2021-12-01&rft.volume=62&rft.issue=12&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0069529&rft_dat=%3Cproquest_scita%3E2604950424%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604950424&rft_id=info:pmid/&rfr_iscdi=true