Adaptive Finite-Time Neural Network Control of Nonlinear Systems With Multiple Objective Constraints and Application to Electromechanical System

This article investigates an adaptive finite-time neural control for a class of strict feedback nonlinear systems with multiple objective constraints. In order to solve the main challenges brought by the state constraints and the emergence of finite-time stability, a new barrier Lyapunov function is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2021-12, Vol.32 (12), p.5416-5426
Hauptverfasser: Liu, Lei, Zhao, Wei, Liu, Yan-Jun, Tong, Shaocheng, Wang, Yue-Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5426
container_issue 12
container_start_page 5416
container_title IEEE transaction on neural networks and learning systems
container_volume 32
creator Liu, Lei
Zhao, Wei
Liu, Yan-Jun
Tong, Shaocheng
Wang, Yue-Ying
description This article investigates an adaptive finite-time neural control for a class of strict feedback nonlinear systems with multiple objective constraints. In order to solve the main challenges brought by the state constraints and the emergence of finite-time stability, a new barrier Lyapunov function is proposed for the first time, not only can it solve multiobjective constraints effectively but also ensure that all states are always within the constraint intervals. Second, by combining the command filter method and backstepping control, the adaptive controller is designed. What is more, the proposed controller has the ability to avoid the "singularity" problem. The compensation mechanism is introduced to neutralize the error appearing in the filtering process. Furthermore, the neural network is used to approximate the unknown function in the design process. It is shown that the proposed finite-time neural adaptive control scheme achieves a good tracking effect. And each objective function does not violate the constraint bound. Finally, a simulation example of electromechanical dynamic system is given to prove the effectiveness of the proposed finite-time control strategy.
doi_str_mv 10.1109/TNNLS.2020.3027689
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2604919690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9228892</ieee_id><sourcerecordid>2604919690</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-c47781b4db53ee9004ef7e52a7dc862df2f56511d91812c6fb256e402fe584283</originalsourceid><addsrcrecordid>eNpdkUFv0zAYhiMEYtPYHwAJWeLCJcX-Ejv2sao2QCrdYUVwi9zki-bi2MF2QPsX-8nz1tIDvnyW_byvLD9F8ZbRBWNUfdpuNuvbBVCgi4pCI6R6UZwDE1BCJeXL0775eVZcxrineQnKRa1eF2dVRUUtuDgvHpa9npL5g-TaOJOw3JoRyQbnoG0e6a8Pv8jKuxS8JX4gG--scagDub2PCcdIfph0R77NNpnJIrnZ7bF77suhmII2LkWiXU-W02RNp5PxjiRPrmzmgh-xu9Mun9tj4Zvi1aBtxMvjvCi-X19tV1_K9c3nr6vluuwqzlLZ1U0j2a7ud7xCVJTWODTIQTd9JwX0AwxccMZ6xSSDTgw74AJrCgNyWYOsLoqPh94p-N8zxtSOJnZorXbo59hCzZnkTf60jH74D937Obj8uhYErRVTQtFMwYHqgo8x4NBOwYw63LeMtk_K2mdl7ZOy9qgsh94fq-fdiP0p8k9QBt4dAIOIp2sFIKWC6hGxvpwo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604919690</pqid></control><display><type>article</type><title>Adaptive Finite-Time Neural Network Control of Nonlinear Systems With Multiple Objective Constraints and Application to Electromechanical System</title><source>IEL</source><creator>Liu, Lei ; Zhao, Wei ; Liu, Yan-Jun ; Tong, Shaocheng ; Wang, Yue-Ying</creator><creatorcontrib>Liu, Lei ; Zhao, Wei ; Liu, Yan-Jun ; Tong, Shaocheng ; Wang, Yue-Ying</creatorcontrib><description>This article investigates an adaptive finite-time neural control for a class of strict feedback nonlinear systems with multiple objective constraints. In order to solve the main challenges brought by the state constraints and the emergence of finite-time stability, a new barrier Lyapunov function is proposed for the first time, not only can it solve multiobjective constraints effectively but also ensure that all states are always within the constraint intervals. Second, by combining the command filter method and backstepping control, the adaptive controller is designed. What is more, the proposed controller has the ability to avoid the "singularity" problem. The compensation mechanism is introduced to neutralize the error appearing in the filtering process. Furthermore, the neural network is used to approximate the unknown function in the design process. It is shown that the proposed finite-time neural adaptive control scheme achieves a good tracking effect. And each objective function does not violate the constraint bound. Finally, a simulation example of electromechanical dynamic system is given to prove the effectiveness of the proposed finite-time control strategy.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2020.3027689</identifier><identifier>PMID: 33064656</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive control ; Artificial neural networks ; Backstepping ; barrier Lyapunov functions (BLFs) ; command filter backstepping ; Constraint modelling ; Control systems ; Control systems design ; Controllers ; finite-time control ; Liapunov functions ; Multiple objective analysis ; Network control ; neural network (NN) ; Neural networks ; Nonlinear control ; Nonlinear systems ; Objective function ; Stability analysis</subject><ispartof>IEEE transaction on neural networks and learning systems, 2021-12, Vol.32 (12), p.5416-5426</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-c47781b4db53ee9004ef7e52a7dc862df2f56511d91812c6fb256e402fe584283</citedby><cites>FETCH-LOGICAL-c351t-c47781b4db53ee9004ef7e52a7dc862df2f56511d91812c6fb256e402fe584283</cites><orcidid>0000-0001-9737-6765 ; 0000-0002-1771-6342 ; 0000-0003-3724-0596 ; 0000-0002-7366-7805</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9228892$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9228892$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33064656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Liu, Yan-Jun</creatorcontrib><creatorcontrib>Tong, Shaocheng</creatorcontrib><creatorcontrib>Wang, Yue-Ying</creatorcontrib><title>Adaptive Finite-Time Neural Network Control of Nonlinear Systems With Multiple Objective Constraints and Application to Electromechanical System</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>This article investigates an adaptive finite-time neural control for a class of strict feedback nonlinear systems with multiple objective constraints. In order to solve the main challenges brought by the state constraints and the emergence of finite-time stability, a new barrier Lyapunov function is proposed for the first time, not only can it solve multiobjective constraints effectively but also ensure that all states are always within the constraint intervals. Second, by combining the command filter method and backstepping control, the adaptive controller is designed. What is more, the proposed controller has the ability to avoid the "singularity" problem. The compensation mechanism is introduced to neutralize the error appearing in the filtering process. Furthermore, the neural network is used to approximate the unknown function in the design process. It is shown that the proposed finite-time neural adaptive control scheme achieves a good tracking effect. And each objective function does not violate the constraint bound. Finally, a simulation example of electromechanical dynamic system is given to prove the effectiveness of the proposed finite-time control strategy.</description><subject>Adaptive control</subject><subject>Artificial neural networks</subject><subject>Backstepping</subject><subject>barrier Lyapunov functions (BLFs)</subject><subject>command filter backstepping</subject><subject>Constraint modelling</subject><subject>Control systems</subject><subject>Control systems design</subject><subject>Controllers</subject><subject>finite-time control</subject><subject>Liapunov functions</subject><subject>Multiple objective analysis</subject><subject>Network control</subject><subject>neural network (NN)</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Objective function</subject><subject>Stability analysis</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUFv0zAYhiMEYtPYHwAJWeLCJcX-Ejv2sao2QCrdYUVwi9zki-bi2MF2QPsX-8nz1tIDvnyW_byvLD9F8ZbRBWNUfdpuNuvbBVCgi4pCI6R6UZwDE1BCJeXL0775eVZcxrineQnKRa1eF2dVRUUtuDgvHpa9npL5g-TaOJOw3JoRyQbnoG0e6a8Pv8jKuxS8JX4gG--scagDub2PCcdIfph0R77NNpnJIrnZ7bF77suhmII2LkWiXU-W02RNp5PxjiRPrmzmgh-xu9Mun9tj4Zvi1aBtxMvjvCi-X19tV1_K9c3nr6vluuwqzlLZ1U0j2a7ud7xCVJTWODTIQTd9JwX0AwxccMZ6xSSDTgw74AJrCgNyWYOsLoqPh94p-N8zxtSOJnZorXbo59hCzZnkTf60jH74D937Obj8uhYErRVTQtFMwYHqgo8x4NBOwYw63LeMtk_K2mdl7ZOy9qgsh94fq-fdiP0p8k9QBt4dAIOIp2sFIKWC6hGxvpwo</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Liu, Lei</creator><creator>Zhao, Wei</creator><creator>Liu, Yan-Jun</creator><creator>Tong, Shaocheng</creator><creator>Wang, Yue-Ying</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9737-6765</orcidid><orcidid>https://orcid.org/0000-0002-1771-6342</orcidid><orcidid>https://orcid.org/0000-0003-3724-0596</orcidid><orcidid>https://orcid.org/0000-0002-7366-7805</orcidid></search><sort><creationdate>20211201</creationdate><title>Adaptive Finite-Time Neural Network Control of Nonlinear Systems With Multiple Objective Constraints and Application to Electromechanical System</title><author>Liu, Lei ; Zhao, Wei ; Liu, Yan-Jun ; Tong, Shaocheng ; Wang, Yue-Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-c47781b4db53ee9004ef7e52a7dc862df2f56511d91812c6fb256e402fe584283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive control</topic><topic>Artificial neural networks</topic><topic>Backstepping</topic><topic>barrier Lyapunov functions (BLFs)</topic><topic>command filter backstepping</topic><topic>Constraint modelling</topic><topic>Control systems</topic><topic>Control systems design</topic><topic>Controllers</topic><topic>finite-time control</topic><topic>Liapunov functions</topic><topic>Multiple objective analysis</topic><topic>Network control</topic><topic>neural network (NN)</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Objective function</topic><topic>Stability analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Zhao, Wei</creatorcontrib><creatorcontrib>Liu, Yan-Jun</creatorcontrib><creatorcontrib>Tong, Shaocheng</creatorcontrib><creatorcontrib>Wang, Yue-Ying</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEL</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liu, Lei</au><au>Zhao, Wei</au><au>Liu, Yan-Jun</au><au>Tong, Shaocheng</au><au>Wang, Yue-Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Finite-Time Neural Network Control of Nonlinear Systems With Multiple Objective Constraints and Application to Electromechanical System</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>32</volume><issue>12</issue><spage>5416</spage><epage>5426</epage><pages>5416-5426</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>This article investigates an adaptive finite-time neural control for a class of strict feedback nonlinear systems with multiple objective constraints. In order to solve the main challenges brought by the state constraints and the emergence of finite-time stability, a new barrier Lyapunov function is proposed for the first time, not only can it solve multiobjective constraints effectively but also ensure that all states are always within the constraint intervals. Second, by combining the command filter method and backstepping control, the adaptive controller is designed. What is more, the proposed controller has the ability to avoid the "singularity" problem. The compensation mechanism is introduced to neutralize the error appearing in the filtering process. Furthermore, the neural network is used to approximate the unknown function in the design process. It is shown that the proposed finite-time neural adaptive control scheme achieves a good tracking effect. And each objective function does not violate the constraint bound. Finally, a simulation example of electromechanical dynamic system is given to prove the effectiveness of the proposed finite-time control strategy.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>33064656</pmid><doi>10.1109/TNNLS.2020.3027689</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9737-6765</orcidid><orcidid>https://orcid.org/0000-0002-1771-6342</orcidid><orcidid>https://orcid.org/0000-0003-3724-0596</orcidid><orcidid>https://orcid.org/0000-0002-7366-7805</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2021-12, Vol.32 (12), p.5416-5426
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_journals_2604919690
source IEL
subjects Adaptive control
Artificial neural networks
Backstepping
barrier Lyapunov functions (BLFs)
command filter backstepping
Constraint modelling
Control systems
Control systems design
Controllers
finite-time control
Liapunov functions
Multiple objective analysis
Network control
neural network (NN)
Neural networks
Nonlinear control
Nonlinear systems
Objective function
Stability analysis
title Adaptive Finite-Time Neural Network Control of Nonlinear Systems With Multiple Objective Constraints and Application to Electromechanical System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Finite-Time%20Neural%20Network%20Control%20of%20Nonlinear%20Systems%20With%20Multiple%20Objective%20Constraints%20and%20Application%20to%20Electromechanical%20System&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Liu,%20Lei&rft.date=2021-12-01&rft.volume=32&rft.issue=12&rft.spage=5416&rft.epage=5426&rft.pages=5416-5426&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2020.3027689&rft_dat=%3Cproquest_RIE%3E2604919690%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604919690&rft_id=info:pmid/33064656&rft_ieee_id=9228892&rfr_iscdi=true