Deep learning-based decision support system for weeds detection in wheat fields
In precision farming, identifying weeds is an essential first step in planning an integrated pest management program in cereals. By knowing the species present, we can learn about the types of herbicides to use to control them, especially in non-weeding crops where mechanical methods that are not ef...
Gespeichert in:
Veröffentlicht in: | International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2022-02, Vol.12 (1), p.816 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 816 |
container_title | International journal of electrical and computer engineering (Malacca, Malacca) |
container_volume | 12 |
creator | Jabir, Brahim Falih, Noureddine |
description | In precision farming, identifying weeds is an essential first step in planning an integrated pest management program in cereals. By knowing the species present, we can learn about the types of herbicides to use to control them, especially in non-weeding crops where mechanical methods that are not effective (tillage, hand weeding, and hoeing and mowing). Therefore, using the deep learning based on convolutional neural network (CNN) will help to automatically identify weeds and then an intelligent system comes to achieve a localized spraying of the herbicides avoiding their large-scale use, preserving the environment. In this article we propose a smart system based on object detection models, implemented on a Raspberry, seek to identify the presence of relevant objects (weeds) in an area (wheat crop) in real time and classify those objects for decision support including spot spray with a chosen herbicide in accordance to the weed detected. |
doi_str_mv | 10.11591/ijece.v12i1.pp816-825 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2604885846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604885846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-80643df0fa5c30e1c67970cb65cf9c853fcc570faa80f2b3abe25e564b9a77f23</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWGr_ggRcpyaZvGYp9QmFbnQdMpkbTWlnxiS19N87Tl3dA_fjHPgQumV0yZis2X3cgoflD-ORLYfBMEUMlxdoxjXnhEttLsdMjSFGU3ONFjnHhgqhBdVKztDmEWDAO3Cpi90naVyGFrfgY459h_NhGPpUcD7lAnsc-oSPAG0eiQK-_CGxw8cvcAWHCLs236Cr4HYZFv93jj6en95Xr2S9eXlbPayJZ7UpxFAlqjbQ4KSvKDCvdK2pb5T0ofZGVsF7qce3MzTwpnINcAlSiaZ2WgdezdHduXdI_fcBcrHb_pC6cdJyRYUx0gg1UupM-dTnnCDYIcW9SyfLqJ382cmfnfzZyZ8d_VW_9HFnew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604885846</pqid></control><display><type>article</type><title>Deep learning-based decision support system for weeds detection in wheat fields</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jabir, Brahim ; Falih, Noureddine</creator><creatorcontrib>Jabir, Brahim ; Falih, Noureddine</creatorcontrib><description>In precision farming, identifying weeds is an essential first step in planning an integrated pest management program in cereals. By knowing the species present, we can learn about the types of herbicides to use to control them, especially in non-weeding crops where mechanical methods that are not effective (tillage, hand weeding, and hoeing and mowing). Therefore, using the deep learning based on convolutional neural network (CNN) will help to automatically identify weeds and then an intelligent system comes to achieve a localized spraying of the herbicides avoiding their large-scale use, preserving the environment. In this article we propose a smart system based on object detection models, implemented on a Raspberry, seek to identify the presence of relevant objects (weeds) in an area (wheat crop) in real time and classify those objects for decision support including spot spray with a chosen herbicide in accordance to the weed detected.</description><identifier>ISSN: 2088-8708</identifier><identifier>EISSN: 2722-2578</identifier><identifier>EISSN: 2088-8708</identifier><identifier>DOI: 10.11591/ijece.v12i1.pp816-825</identifier><language>eng</language><publisher>Yogyakarta: IAES Institute of Advanced Engineering and Science</publisher><subject>Artificial neural networks ; Cereals ; Decision support systems ; Deep learning ; Herbicides ; Mowing ; Object recognition ; Spraying ; Tillage ; Weeds ; Wheat</subject><ispartof>International journal of electrical and computer engineering (Malacca, Malacca), 2022-02, Vol.12 (1), p.816</ispartof><rights>Copyright IAES Institute of Advanced Engineering and Science Feb 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c198t-80643df0fa5c30e1c67970cb65cf9c853fcc570faa80f2b3abe25e564b9a77f23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jabir, Brahim</creatorcontrib><creatorcontrib>Falih, Noureddine</creatorcontrib><title>Deep learning-based decision support system for weeds detection in wheat fields</title><title>International journal of electrical and computer engineering (Malacca, Malacca)</title><description>In precision farming, identifying weeds is an essential first step in planning an integrated pest management program in cereals. By knowing the species present, we can learn about the types of herbicides to use to control them, especially in non-weeding crops where mechanical methods that are not effective (tillage, hand weeding, and hoeing and mowing). Therefore, using the deep learning based on convolutional neural network (CNN) will help to automatically identify weeds and then an intelligent system comes to achieve a localized spraying of the herbicides avoiding their large-scale use, preserving the environment. In this article we propose a smart system based on object detection models, implemented on a Raspberry, seek to identify the presence of relevant objects (weeds) in an area (wheat crop) in real time and classify those objects for decision support including spot spray with a chosen herbicide in accordance to the weed detected.</description><subject>Artificial neural networks</subject><subject>Cereals</subject><subject>Decision support systems</subject><subject>Deep learning</subject><subject>Herbicides</subject><subject>Mowing</subject><subject>Object recognition</subject><subject>Spraying</subject><subject>Tillage</subject><subject>Weeds</subject><subject>Wheat</subject><issn>2088-8708</issn><issn>2722-2578</issn><issn>2088-8708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkEtLAzEUhYMoWGr_ggRcpyaZvGYp9QmFbnQdMpkbTWlnxiS19N87Tl3dA_fjHPgQumV0yZis2X3cgoflD-ORLYfBMEUMlxdoxjXnhEttLsdMjSFGU3ONFjnHhgqhBdVKztDmEWDAO3Cpi90naVyGFrfgY459h_NhGPpUcD7lAnsc-oSPAG0eiQK-_CGxw8cvcAWHCLs236Cr4HYZFv93jj6en95Xr2S9eXlbPayJZ7UpxFAlqjbQ4KSvKDCvdK2pb5T0ofZGVsF7qce3MzTwpnINcAlSiaZ2WgdezdHduXdI_fcBcrHb_pC6cdJyRYUx0gg1UupM-dTnnCDYIcW9SyfLqJ382cmfnfzZyZ8d_VW_9HFnew</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Jabir, Brahim</creator><creator>Falih, Noureddine</creator><general>IAES Institute of Advanced Engineering and Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220201</creationdate><title>Deep learning-based decision support system for weeds detection in wheat fields</title><author>Jabir, Brahim ; Falih, Noureddine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-80643df0fa5c30e1c67970cb65cf9c853fcc570faa80f2b3abe25e564b9a77f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Cereals</topic><topic>Decision support systems</topic><topic>Deep learning</topic><topic>Herbicides</topic><topic>Mowing</topic><topic>Object recognition</topic><topic>Spraying</topic><topic>Tillage</topic><topic>Weeds</topic><topic>Wheat</topic><toplevel>online_resources</toplevel><creatorcontrib>Jabir, Brahim</creatorcontrib><creatorcontrib>Falih, Noureddine</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East & South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jabir, Brahim</au><au>Falih, Noureddine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning-based decision support system for weeds detection in wheat fields</atitle><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>816</spage><pages>816-</pages><issn>2088-8708</issn><eissn>2722-2578</eissn><eissn>2088-8708</eissn><abstract>In precision farming, identifying weeds is an essential first step in planning an integrated pest management program in cereals. By knowing the species present, we can learn about the types of herbicides to use to control them, especially in non-weeding crops where mechanical methods that are not effective (tillage, hand weeding, and hoeing and mowing). Therefore, using the deep learning based on convolutional neural network (CNN) will help to automatically identify weeds and then an intelligent system comes to achieve a localized spraying of the herbicides avoiding their large-scale use, preserving the environment. In this article we propose a smart system based on object detection models, implemented on a Raspberry, seek to identify the presence of relevant objects (weeds) in an area (wheat crop) in real time and classify those objects for decision support including spot spray with a chosen herbicide in accordance to the weed detected.</abstract><cop>Yogyakarta</cop><pub>IAES Institute of Advanced Engineering and Science</pub><doi>10.11591/ijece.v12i1.pp816-825</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2088-8708 |
ispartof | International journal of electrical and computer engineering (Malacca, Malacca), 2022-02, Vol.12 (1), p.816 |
issn | 2088-8708 2722-2578 2088-8708 |
language | eng |
recordid | cdi_proquest_journals_2604885846 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Artificial neural networks Cereals Decision support systems Deep learning Herbicides Mowing Object recognition Spraying Tillage Weeds Wheat |
title | Deep learning-based decision support system for weeds detection in wheat fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning-based%20decision%20support%20system%20for%20weeds%20detection%20in%20wheat%20fields&rft.jtitle=International%20journal%20of%20electrical%20and%20computer%20engineering%20(Malacca,%20Malacca)&rft.au=Jabir,%20Brahim&rft.date=2022-02-01&rft.volume=12&rft.issue=1&rft.spage=816&rft.pages=816-&rft.issn=2088-8708&rft.eissn=2722-2578&rft_id=info:doi/10.11591/ijece.v12i1.pp816-825&rft_dat=%3Cproquest_cross%3E2604885846%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604885846&rft_id=info:pmid/&rfr_iscdi=true |