Deep learning-based decision support system for weeds detection in wheat fields

In precision farming, identifying weeds is an essential first step in planning an integrated pest management program in cereals. By knowing the species present, we can learn about the types of herbicides to use to control them, especially in non-weeding crops where mechanical methods that are not ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical and computer engineering (Malacca, Malacca) Malacca), 2022-02, Vol.12 (1), p.816
Hauptverfasser: Jabir, Brahim, Falih, Noureddine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 816
container_title International journal of electrical and computer engineering (Malacca, Malacca)
container_volume 12
creator Jabir, Brahim
Falih, Noureddine
description In precision farming, identifying weeds is an essential first step in planning an integrated pest management program in cereals. By knowing the species present, we can learn about the types of herbicides to use to control them, especially in non-weeding crops where mechanical methods that are not effective (tillage, hand weeding, and hoeing and mowing). Therefore, using the deep learning based on convolutional neural network (CNN) will help to automatically identify weeds and then an intelligent system comes to achieve a localized spraying of the herbicides avoiding their large-scale use, preserving the environment. In this article we propose a smart system based on object detection models, implemented on a Raspberry, seek to identify the presence of relevant objects (weeds) in an area (wheat crop) in real time and classify those objects for decision support including spot spray with a chosen herbicide in accordance to the weed detected.
doi_str_mv 10.11591/ijece.v12i1.pp816-825
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2604885846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604885846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-80643df0fa5c30e1c67970cb65cf9c853fcc570faa80f2b3abe25e564b9a77f23</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWGr_ggRcpyaZvGYp9QmFbnQdMpkbTWlnxiS19N87Tl3dA_fjHPgQumV0yZis2X3cgoflD-ORLYfBMEUMlxdoxjXnhEttLsdMjSFGU3ONFjnHhgqhBdVKztDmEWDAO3Cpi90naVyGFrfgY459h_NhGPpUcD7lAnsc-oSPAG0eiQK-_CGxw8cvcAWHCLs236Cr4HYZFv93jj6en95Xr2S9eXlbPayJZ7UpxFAlqjbQ4KSvKDCvdK2pb5T0ofZGVsF7qce3MzTwpnINcAlSiaZ2WgdezdHduXdI_fcBcrHb_pC6cdJyRYUx0gg1UupM-dTnnCDYIcW9SyfLqJ382cmfnfzZyZ8d_VW_9HFnew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604885846</pqid></control><display><type>article</type><title>Deep learning-based decision support system for weeds detection in wheat fields</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Jabir, Brahim ; Falih, Noureddine</creator><creatorcontrib>Jabir, Brahim ; Falih, Noureddine</creatorcontrib><description>In precision farming, identifying weeds is an essential first step in planning an integrated pest management program in cereals. By knowing the species present, we can learn about the types of herbicides to use to control them, especially in non-weeding crops where mechanical methods that are not effective (tillage, hand weeding, and hoeing and mowing). Therefore, using the deep learning based on convolutional neural network (CNN) will help to automatically identify weeds and then an intelligent system comes to achieve a localized spraying of the herbicides avoiding their large-scale use, preserving the environment. In this article we propose a smart system based on object detection models, implemented on a Raspberry, seek to identify the presence of relevant objects (weeds) in an area (wheat crop) in real time and classify those objects for decision support including spot spray with a chosen herbicide in accordance to the weed detected.</description><identifier>ISSN: 2088-8708</identifier><identifier>EISSN: 2722-2578</identifier><identifier>EISSN: 2088-8708</identifier><identifier>DOI: 10.11591/ijece.v12i1.pp816-825</identifier><language>eng</language><publisher>Yogyakarta: IAES Institute of Advanced Engineering and Science</publisher><subject>Artificial neural networks ; Cereals ; Decision support systems ; Deep learning ; Herbicides ; Mowing ; Object recognition ; Spraying ; Tillage ; Weeds ; Wheat</subject><ispartof>International journal of electrical and computer engineering (Malacca, Malacca), 2022-02, Vol.12 (1), p.816</ispartof><rights>Copyright IAES Institute of Advanced Engineering and Science Feb 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c198t-80643df0fa5c30e1c67970cb65cf9c853fcc570faa80f2b3abe25e564b9a77f23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jabir, Brahim</creatorcontrib><creatorcontrib>Falih, Noureddine</creatorcontrib><title>Deep learning-based decision support system for weeds detection in wheat fields</title><title>International journal of electrical and computer engineering (Malacca, Malacca)</title><description>In precision farming, identifying weeds is an essential first step in planning an integrated pest management program in cereals. By knowing the species present, we can learn about the types of herbicides to use to control them, especially in non-weeding crops where mechanical methods that are not effective (tillage, hand weeding, and hoeing and mowing). Therefore, using the deep learning based on convolutional neural network (CNN) will help to automatically identify weeds and then an intelligent system comes to achieve a localized spraying of the herbicides avoiding their large-scale use, preserving the environment. In this article we propose a smart system based on object detection models, implemented on a Raspberry, seek to identify the presence of relevant objects (weeds) in an area (wheat crop) in real time and classify those objects for decision support including spot spray with a chosen herbicide in accordance to the weed detected.</description><subject>Artificial neural networks</subject><subject>Cereals</subject><subject>Decision support systems</subject><subject>Deep learning</subject><subject>Herbicides</subject><subject>Mowing</subject><subject>Object recognition</subject><subject>Spraying</subject><subject>Tillage</subject><subject>Weeds</subject><subject>Wheat</subject><issn>2088-8708</issn><issn>2722-2578</issn><issn>2088-8708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkEtLAzEUhYMoWGr_ggRcpyaZvGYp9QmFbnQdMpkbTWlnxiS19N87Tl3dA_fjHPgQumV0yZis2X3cgoflD-ORLYfBMEUMlxdoxjXnhEttLsdMjSFGU3ONFjnHhgqhBdVKztDmEWDAO3Cpi90naVyGFrfgY459h_NhGPpUcD7lAnsc-oSPAG0eiQK-_CGxw8cvcAWHCLs236Cr4HYZFv93jj6en95Xr2S9eXlbPayJZ7UpxFAlqjbQ4KSvKDCvdK2pb5T0ofZGVsF7qce3MzTwpnINcAlSiaZ2WgdezdHduXdI_fcBcrHb_pC6cdJyRYUx0gg1UupM-dTnnCDYIcW9SyfLqJ382cmfnfzZyZ8d_VW_9HFnew</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Jabir, Brahim</creator><creator>Falih, Noureddine</creator><general>IAES Institute of Advanced Engineering and Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BVBZV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220201</creationdate><title>Deep learning-based decision support system for weeds detection in wheat fields</title><author>Jabir, Brahim ; Falih, Noureddine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-80643df0fa5c30e1c67970cb65cf9c853fcc570faa80f2b3abe25e564b9a77f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial neural networks</topic><topic>Cereals</topic><topic>Decision support systems</topic><topic>Deep learning</topic><topic>Herbicides</topic><topic>Mowing</topic><topic>Object recognition</topic><topic>Spraying</topic><topic>Tillage</topic><topic>Weeds</topic><topic>Wheat</topic><toplevel>online_resources</toplevel><creatorcontrib>Jabir, Brahim</creatorcontrib><creatorcontrib>Falih, Noureddine</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>East &amp; South Asia Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jabir, Brahim</au><au>Falih, Noureddine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning-based decision support system for weeds detection in wheat fields</atitle><jtitle>International journal of electrical and computer engineering (Malacca, Malacca)</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>816</spage><pages>816-</pages><issn>2088-8708</issn><eissn>2722-2578</eissn><eissn>2088-8708</eissn><abstract>In precision farming, identifying weeds is an essential first step in planning an integrated pest management program in cereals. By knowing the species present, we can learn about the types of herbicides to use to control them, especially in non-weeding crops where mechanical methods that are not effective (tillage, hand weeding, and hoeing and mowing). Therefore, using the deep learning based on convolutional neural network (CNN) will help to automatically identify weeds and then an intelligent system comes to achieve a localized spraying of the herbicides avoiding their large-scale use, preserving the environment. In this article we propose a smart system based on object detection models, implemented on a Raspberry, seek to identify the presence of relevant objects (weeds) in an area (wheat crop) in real time and classify those objects for decision support including spot spray with a chosen herbicide in accordance to the weed detected.</abstract><cop>Yogyakarta</cop><pub>IAES Institute of Advanced Engineering and Science</pub><doi>10.11591/ijece.v12i1.pp816-825</doi></addata></record>
fulltext fulltext
identifier ISSN: 2088-8708
ispartof International journal of electrical and computer engineering (Malacca, Malacca), 2022-02, Vol.12 (1), p.816
issn 2088-8708
2722-2578
2088-8708
language eng
recordid cdi_proquest_journals_2604885846
source EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
Cereals
Decision support systems
Deep learning
Herbicides
Mowing
Object recognition
Spraying
Tillage
Weeds
Wheat
title Deep learning-based decision support system for weeds detection in wheat fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A03%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning-based%20decision%20support%20system%20for%20weeds%20detection%20in%20wheat%20fields&rft.jtitle=International%20journal%20of%20electrical%20and%20computer%20engineering%20(Malacca,%20Malacca)&rft.au=Jabir,%20Brahim&rft.date=2022-02-01&rft.volume=12&rft.issue=1&rft.spage=816&rft.pages=816-&rft.issn=2088-8708&rft.eissn=2722-2578&rft_id=info:doi/10.11591/ijece.v12i1.pp816-825&rft_dat=%3Cproquest_cross%3E2604885846%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604885846&rft_id=info:pmid/&rfr_iscdi=true