Electrochemistry of bismuth interlayers in (Bi2)m(Bi2Te3)n superlattice

Selective electrochemical transformations of bismuth interlayers in (Bi 2 ) m (Bi 2 Te 3 ) n superlattices can be of interest as a means of thermoelectric materials design based on bismuth telluride. In this work, the interlayers in the electrodeposited (Bi 2 ) m (Bi 2 Te 3 ) n superlattice structur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solid state electrochemistry 2021-12, Vol.25 (12), p.2807-2819
Hauptverfasser: Bakavets, Aliaksei, Aniskevich, Yauhen, Ragoisha, Genady, Mazanik, Alexander, Tsyntsaru, Natalia, Cesiulis, Henrikas, Streltsov, Eugene
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2819
container_issue 12
container_start_page 2807
container_title Journal of solid state electrochemistry
container_volume 25
creator Bakavets, Aliaksei
Aniskevich, Yauhen
Ragoisha, Genady
Mazanik, Alexander
Tsyntsaru, Natalia
Cesiulis, Henrikas
Streltsov, Eugene
description Selective electrochemical transformations of bismuth interlayers in (Bi 2 ) m (Bi 2 Te 3 ) n superlattices can be of interest as a means of thermoelectric materials design based on bismuth telluride. In this work, the interlayers in the electrodeposited (Bi 2 ) m (Bi 2 Te 3 ) n superlattice structures formed by pulse potential controlled electrodeposition were characterized with electrochemical microgravimetry on quartz crystal electrodes, cyclic voltammetry, potentiodynamic electrochemical impedance spectroscopy (PDEIS), and in situ Raman spectroscopy. The oxidation potential of bismuth in the interlayers is in between the potentials of metallic bismuth and bismuth telluride anodic oxidation, which allows electrochemical detection and selective anodic dissolution of the interlayer bismuth. Microgravimetry and cyclic voltammetry have provided monitoring of bismuth interlayer dissolution and the subsequent underpotential deposition (upd) of bismuth adatoms onto Bi 2 Te 3 layers in the electrochemically created slits. PDEIS provided separate monitoring of the interfacial charge transfer, spatially restricted diffusion, capacitance of faradaic origin, and double-layer capacitance, which disclosed different variations of the electrochemical interface area in the superlattices with initial bismuth content below and above that of Bi 4 Te 3 . In situ Raman spectroscopy has monitored the removal of bismuth interlayers and distinguished different locations of Bi adatoms in two stages of Bi upd. The electrochemically created slits of molecular dimension have a potential of being used as sieves, e.g., to provide selective accessibility of the electrochemically created centers inside them to molecules and ions in multi-component solutions.
doi_str_mv 10.1007/s10008-021-05068-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2604856605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604856605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2299-5219192b20b315eb43095b14907549d8624816e2009b7a34b4926b01963dc0093</originalsourceid><addsrcrecordid>eNp9UD1PwzAUtBBIlMIfYIrEQgfD82fsEaq2IFViKbMVpy5N1STFdob8e5wGiY3l3um9u3vSIXRP4IkA5M8hISgMlGAQIBXWF2hCOGMYcqkuz5xixZW6RjchHABILglM0GpxdGX0bbl3dRWi77N2l9kq1F3cZ1UTnT8WvfMh8ezxtaKzesCNY7MmC91pOMdYle4WXe2KY3B3v3OKPpeLzfwNrz9W7_OXNS4p1RoLSjTR1FKwjAhnOQMtLOEacsH1VknKFZGOAmibF4xbrqm0QLRk2zIt2RQ9jLkn3353LkRzaDvfpJeGSuBKSAkiqeioKn0bgnc7c_JVXfjeEDBDYWYszKTCzLkwM0Sz0RSSuPly_i_6H9cP9wJqdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604856605</pqid></control><display><type>article</type><title>Electrochemistry of bismuth interlayers in (Bi2)m(Bi2Te3)n superlattice</title><source>SpringerNature Journals</source><creator>Bakavets, Aliaksei ; Aniskevich, Yauhen ; Ragoisha, Genady ; Mazanik, Alexander ; Tsyntsaru, Natalia ; Cesiulis, Henrikas ; Streltsov, Eugene</creator><creatorcontrib>Bakavets, Aliaksei ; Aniskevich, Yauhen ; Ragoisha, Genady ; Mazanik, Alexander ; Tsyntsaru, Natalia ; Cesiulis, Henrikas ; Streltsov, Eugene</creatorcontrib><description>Selective electrochemical transformations of bismuth interlayers in (Bi 2 ) m (Bi 2 Te 3 ) n superlattices can be of interest as a means of thermoelectric materials design based on bismuth telluride. In this work, the interlayers in the electrodeposited (Bi 2 ) m (Bi 2 Te 3 ) n superlattice structures formed by pulse potential controlled electrodeposition were characterized with electrochemical microgravimetry on quartz crystal electrodes, cyclic voltammetry, potentiodynamic electrochemical impedance spectroscopy (PDEIS), and in situ Raman spectroscopy. The oxidation potential of bismuth in the interlayers is in between the potentials of metallic bismuth and bismuth telluride anodic oxidation, which allows electrochemical detection and selective anodic dissolution of the interlayer bismuth. Microgravimetry and cyclic voltammetry have provided monitoring of bismuth interlayer dissolution and the subsequent underpotential deposition (upd) of bismuth adatoms onto Bi 2 Te 3 layers in the electrochemically created slits. PDEIS provided separate monitoring of the interfacial charge transfer, spatially restricted diffusion, capacitance of faradaic origin, and double-layer capacitance, which disclosed different variations of the electrochemical interface area in the superlattices with initial bismuth content below and above that of Bi 4 Te 3 . In situ Raman spectroscopy has monitored the removal of bismuth interlayers and distinguished different locations of Bi adatoms in two stages of Bi upd. The electrochemically created slits of molecular dimension have a potential of being used as sieves, e.g., to provide selective accessibility of the electrochemically created centers inside them to molecules and ions in multi-component solutions.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-021-05068-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adatoms ; Analytical Chemistry ; Anodic dissolution ; Anodizing ; Bismuth tellurides ; Capacitance ; Characterization and Evaluation of Materials ; Charge transfer ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Diffusion layers ; Dissolution ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrochemistry ; Energy Storage ; Interlayers ; Intermetallic compounds ; Monitoring ; Original Paper ; Oxidation ; Physical Chemistry ; Quartz crystals ; Raman spectroscopy ; Slits ; Spectrum analysis ; Superlattices ; Thermoelectric materials ; Underpotential deposition ; Voltammetry</subject><ispartof>Journal of solid state electrochemistry, 2021-12, Vol.25 (12), p.2807-2819</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2299-5219192b20b315eb43095b14907549d8624816e2009b7a34b4926b01963dc0093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10008-021-05068-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10008-021-05068-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Bakavets, Aliaksei</creatorcontrib><creatorcontrib>Aniskevich, Yauhen</creatorcontrib><creatorcontrib>Ragoisha, Genady</creatorcontrib><creatorcontrib>Mazanik, Alexander</creatorcontrib><creatorcontrib>Tsyntsaru, Natalia</creatorcontrib><creatorcontrib>Cesiulis, Henrikas</creatorcontrib><creatorcontrib>Streltsov, Eugene</creatorcontrib><title>Electrochemistry of bismuth interlayers in (Bi2)m(Bi2Te3)n superlattice</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>Selective electrochemical transformations of bismuth interlayers in (Bi 2 ) m (Bi 2 Te 3 ) n superlattices can be of interest as a means of thermoelectric materials design based on bismuth telluride. In this work, the interlayers in the electrodeposited (Bi 2 ) m (Bi 2 Te 3 ) n superlattice structures formed by pulse potential controlled electrodeposition were characterized with electrochemical microgravimetry on quartz crystal electrodes, cyclic voltammetry, potentiodynamic electrochemical impedance spectroscopy (PDEIS), and in situ Raman spectroscopy. The oxidation potential of bismuth in the interlayers is in between the potentials of metallic bismuth and bismuth telluride anodic oxidation, which allows electrochemical detection and selective anodic dissolution of the interlayer bismuth. Microgravimetry and cyclic voltammetry have provided monitoring of bismuth interlayer dissolution and the subsequent underpotential deposition (upd) of bismuth adatoms onto Bi 2 Te 3 layers in the electrochemically created slits. PDEIS provided separate monitoring of the interfacial charge transfer, spatially restricted diffusion, capacitance of faradaic origin, and double-layer capacitance, which disclosed different variations of the electrochemical interface area in the superlattices with initial bismuth content below and above that of Bi 4 Te 3 . In situ Raman spectroscopy has monitored the removal of bismuth interlayers and distinguished different locations of Bi adatoms in two stages of Bi upd. The electrochemically created slits of molecular dimension have a potential of being used as sieves, e.g., to provide selective accessibility of the electrochemically created centers inside them to molecules and ions in multi-component solutions.</description><subject>Adatoms</subject><subject>Analytical Chemistry</subject><subject>Anodic dissolution</subject><subject>Anodizing</subject><subject>Bismuth tellurides</subject><subject>Capacitance</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Diffusion layers</subject><subject>Dissolution</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Energy Storage</subject><subject>Interlayers</subject><subject>Intermetallic compounds</subject><subject>Monitoring</subject><subject>Original Paper</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Quartz crystals</subject><subject>Raman spectroscopy</subject><subject>Slits</subject><subject>Spectrum analysis</subject><subject>Superlattices</subject><subject>Thermoelectric materials</subject><subject>Underpotential deposition</subject><subject>Voltammetry</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UD1PwzAUtBBIlMIfYIrEQgfD82fsEaq2IFViKbMVpy5N1STFdob8e5wGiY3l3um9u3vSIXRP4IkA5M8hISgMlGAQIBXWF2hCOGMYcqkuz5xixZW6RjchHABILglM0GpxdGX0bbl3dRWi77N2l9kq1F3cZ1UTnT8WvfMh8ezxtaKzesCNY7MmC91pOMdYle4WXe2KY3B3v3OKPpeLzfwNrz9W7_OXNS4p1RoLSjTR1FKwjAhnOQMtLOEacsH1VknKFZGOAmibF4xbrqm0QLRk2zIt2RQ9jLkn3353LkRzaDvfpJeGSuBKSAkiqeioKn0bgnc7c_JVXfjeEDBDYWYszKTCzLkwM0Sz0RSSuPly_i_6H9cP9wJqdw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Bakavets, Aliaksei</creator><creator>Aniskevich, Yauhen</creator><creator>Ragoisha, Genady</creator><creator>Mazanik, Alexander</creator><creator>Tsyntsaru, Natalia</creator><creator>Cesiulis, Henrikas</creator><creator>Streltsov, Eugene</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Electrochemistry of bismuth interlayers in (Bi2)m(Bi2Te3)n superlattice</title><author>Bakavets, Aliaksei ; Aniskevich, Yauhen ; Ragoisha, Genady ; Mazanik, Alexander ; Tsyntsaru, Natalia ; Cesiulis, Henrikas ; Streltsov, Eugene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2299-5219192b20b315eb43095b14907549d8624816e2009b7a34b4926b01963dc0093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adatoms</topic><topic>Analytical Chemistry</topic><topic>Anodic dissolution</topic><topic>Anodizing</topic><topic>Bismuth tellurides</topic><topic>Capacitance</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Diffusion layers</topic><topic>Dissolution</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Energy Storage</topic><topic>Interlayers</topic><topic>Intermetallic compounds</topic><topic>Monitoring</topic><topic>Original Paper</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Quartz crystals</topic><topic>Raman spectroscopy</topic><topic>Slits</topic><topic>Spectrum analysis</topic><topic>Superlattices</topic><topic>Thermoelectric materials</topic><topic>Underpotential deposition</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakavets, Aliaksei</creatorcontrib><creatorcontrib>Aniskevich, Yauhen</creatorcontrib><creatorcontrib>Ragoisha, Genady</creatorcontrib><creatorcontrib>Mazanik, Alexander</creatorcontrib><creatorcontrib>Tsyntsaru, Natalia</creatorcontrib><creatorcontrib>Cesiulis, Henrikas</creatorcontrib><creatorcontrib>Streltsov, Eugene</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakavets, Aliaksei</au><au>Aniskevich, Yauhen</au><au>Ragoisha, Genady</au><au>Mazanik, Alexander</au><au>Tsyntsaru, Natalia</au><au>Cesiulis, Henrikas</au><au>Streltsov, Eugene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemistry of bismuth interlayers in (Bi2)m(Bi2Te3)n superlattice</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>25</volume><issue>12</issue><spage>2807</spage><epage>2819</epage><pages>2807-2819</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>Selective electrochemical transformations of bismuth interlayers in (Bi 2 ) m (Bi 2 Te 3 ) n superlattices can be of interest as a means of thermoelectric materials design based on bismuth telluride. In this work, the interlayers in the electrodeposited (Bi 2 ) m (Bi 2 Te 3 ) n superlattice structures formed by pulse potential controlled electrodeposition were characterized with electrochemical microgravimetry on quartz crystal electrodes, cyclic voltammetry, potentiodynamic electrochemical impedance spectroscopy (PDEIS), and in situ Raman spectroscopy. The oxidation potential of bismuth in the interlayers is in between the potentials of metallic bismuth and bismuth telluride anodic oxidation, which allows electrochemical detection and selective anodic dissolution of the interlayer bismuth. Microgravimetry and cyclic voltammetry have provided monitoring of bismuth interlayer dissolution and the subsequent underpotential deposition (upd) of bismuth adatoms onto Bi 2 Te 3 layers in the electrochemically created slits. PDEIS provided separate monitoring of the interfacial charge transfer, spatially restricted diffusion, capacitance of faradaic origin, and double-layer capacitance, which disclosed different variations of the electrochemical interface area in the superlattices with initial bismuth content below and above that of Bi 4 Te 3 . In situ Raman spectroscopy has monitored the removal of bismuth interlayers and distinguished different locations of Bi adatoms in two stages of Bi upd. The electrochemically created slits of molecular dimension have a potential of being used as sieves, e.g., to provide selective accessibility of the electrochemically created centers inside them to molecules and ions in multi-component solutions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-021-05068-9</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-8488
ispartof Journal of solid state electrochemistry, 2021-12, Vol.25 (12), p.2807-2819
issn 1432-8488
1433-0768
language eng
recordid cdi_proquest_journals_2604856605
source SpringerNature Journals
subjects Adatoms
Analytical Chemistry
Anodic dissolution
Anodizing
Bismuth tellurides
Capacitance
Characterization and Evaluation of Materials
Charge transfer
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Diffusion layers
Dissolution
Electrochemical analysis
Electrochemical impedance spectroscopy
Electrochemistry
Energy Storage
Interlayers
Intermetallic compounds
Monitoring
Original Paper
Oxidation
Physical Chemistry
Quartz crystals
Raman spectroscopy
Slits
Spectrum analysis
Superlattices
Thermoelectric materials
Underpotential deposition
Voltammetry
title Electrochemistry of bismuth interlayers in (Bi2)m(Bi2Te3)n superlattice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T04%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemistry%20of%20bismuth%20interlayers%20in%20(Bi2)m(Bi2Te3)n%20superlattice&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Bakavets,%20Aliaksei&rft.date=2021-12-01&rft.volume=25&rft.issue=12&rft.spage=2807&rft.epage=2819&rft.pages=2807-2819&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-021-05068-9&rft_dat=%3Cproquest_cross%3E2604856605%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604856605&rft_id=info:pmid/&rfr_iscdi=true