Electrochemistry of bismuth interlayers in (Bi2)m(Bi2Te3)n superlattice
Selective electrochemical transformations of bismuth interlayers in (Bi 2 ) m (Bi 2 Te 3 ) n superlattices can be of interest as a means of thermoelectric materials design based on bismuth telluride. In this work, the interlayers in the electrodeposited (Bi 2 ) m (Bi 2 Te 3 ) n superlattice structur...
Gespeichert in:
Veröffentlicht in: | Journal of solid state electrochemistry 2021-12, Vol.25 (12), p.2807-2819 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2819 |
---|---|
container_issue | 12 |
container_start_page | 2807 |
container_title | Journal of solid state electrochemistry |
container_volume | 25 |
creator | Bakavets, Aliaksei Aniskevich, Yauhen Ragoisha, Genady Mazanik, Alexander Tsyntsaru, Natalia Cesiulis, Henrikas Streltsov, Eugene |
description | Selective electrochemical transformations of bismuth interlayers in (Bi
2
)
m
(Bi
2
Te
3
)
n
superlattices can be of interest as a means of thermoelectric materials design based on bismuth telluride. In this work, the interlayers in the electrodeposited (Bi
2
)
m
(Bi
2
Te
3
)
n
superlattice structures formed by pulse potential controlled electrodeposition were characterized with electrochemical microgravimetry on quartz crystal electrodes, cyclic voltammetry, potentiodynamic electrochemical impedance spectroscopy (PDEIS), and in situ Raman spectroscopy. The oxidation potential of bismuth in the interlayers is in between the potentials of metallic bismuth and bismuth telluride anodic oxidation, which allows electrochemical detection and selective anodic dissolution of the interlayer bismuth. Microgravimetry and cyclic voltammetry have provided monitoring of bismuth interlayer dissolution and the subsequent underpotential deposition (upd) of bismuth adatoms onto Bi
2
Te
3
layers in the electrochemically created slits. PDEIS provided separate monitoring of the interfacial charge transfer, spatially restricted diffusion, capacitance of faradaic origin, and double-layer capacitance, which disclosed different variations of the electrochemical interface area in the superlattices with initial bismuth content below and above that of Bi
4
Te
3
. In situ Raman spectroscopy has monitored the removal of bismuth interlayers and distinguished different locations of Bi adatoms in two stages of Bi upd. The electrochemically created slits of molecular dimension have a potential of being used as sieves, e.g., to provide selective accessibility of the electrochemically created centers inside them to molecules and ions in multi-component solutions. |
doi_str_mv | 10.1007/s10008-021-05068-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2604856605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604856605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2299-5219192b20b315eb43095b14907549d8624816e2009b7a34b4926b01963dc0093</originalsourceid><addsrcrecordid>eNp9UD1PwzAUtBBIlMIfYIrEQgfD82fsEaq2IFViKbMVpy5N1STFdob8e5wGiY3l3um9u3vSIXRP4IkA5M8hISgMlGAQIBXWF2hCOGMYcqkuz5xixZW6RjchHABILglM0GpxdGX0bbl3dRWi77N2l9kq1F3cZ1UTnT8WvfMh8ezxtaKzesCNY7MmC91pOMdYle4WXe2KY3B3v3OKPpeLzfwNrz9W7_OXNS4p1RoLSjTR1FKwjAhnOQMtLOEacsH1VknKFZGOAmibF4xbrqm0QLRk2zIt2RQ9jLkn3353LkRzaDvfpJeGSuBKSAkiqeioKn0bgnc7c_JVXfjeEDBDYWYszKTCzLkwM0Sz0RSSuPly_i_6H9cP9wJqdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604856605</pqid></control><display><type>article</type><title>Electrochemistry of bismuth interlayers in (Bi2)m(Bi2Te3)n superlattice</title><source>SpringerNature Journals</source><creator>Bakavets, Aliaksei ; Aniskevich, Yauhen ; Ragoisha, Genady ; Mazanik, Alexander ; Tsyntsaru, Natalia ; Cesiulis, Henrikas ; Streltsov, Eugene</creator><creatorcontrib>Bakavets, Aliaksei ; Aniskevich, Yauhen ; Ragoisha, Genady ; Mazanik, Alexander ; Tsyntsaru, Natalia ; Cesiulis, Henrikas ; Streltsov, Eugene</creatorcontrib><description>Selective electrochemical transformations of bismuth interlayers in (Bi
2
)
m
(Bi
2
Te
3
)
n
superlattices can be of interest as a means of thermoelectric materials design based on bismuth telluride. In this work, the interlayers in the electrodeposited (Bi
2
)
m
(Bi
2
Te
3
)
n
superlattice structures formed by pulse potential controlled electrodeposition were characterized with electrochemical microgravimetry on quartz crystal electrodes, cyclic voltammetry, potentiodynamic electrochemical impedance spectroscopy (PDEIS), and in situ Raman spectroscopy. The oxidation potential of bismuth in the interlayers is in between the potentials of metallic bismuth and bismuth telluride anodic oxidation, which allows electrochemical detection and selective anodic dissolution of the interlayer bismuth. Microgravimetry and cyclic voltammetry have provided monitoring of bismuth interlayer dissolution and the subsequent underpotential deposition (upd) of bismuth adatoms onto Bi
2
Te
3
layers in the electrochemically created slits. PDEIS provided separate monitoring of the interfacial charge transfer, spatially restricted diffusion, capacitance of faradaic origin, and double-layer capacitance, which disclosed different variations of the electrochemical interface area in the superlattices with initial bismuth content below and above that of Bi
4
Te
3
. In situ Raman spectroscopy has monitored the removal of bismuth interlayers and distinguished different locations of Bi adatoms in two stages of Bi upd. The electrochemically created slits of molecular dimension have a potential of being used as sieves, e.g., to provide selective accessibility of the electrochemically created centers inside them to molecules and ions in multi-component solutions.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-021-05068-9</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adatoms ; Analytical Chemistry ; Anodic dissolution ; Anodizing ; Bismuth tellurides ; Capacitance ; Characterization and Evaluation of Materials ; Charge transfer ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Diffusion layers ; Dissolution ; Electrochemical analysis ; Electrochemical impedance spectroscopy ; Electrochemistry ; Energy Storage ; Interlayers ; Intermetallic compounds ; Monitoring ; Original Paper ; Oxidation ; Physical Chemistry ; Quartz crystals ; Raman spectroscopy ; Slits ; Spectrum analysis ; Superlattices ; Thermoelectric materials ; Underpotential deposition ; Voltammetry</subject><ispartof>Journal of solid state electrochemistry, 2021-12, Vol.25 (12), p.2807-2819</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2299-5219192b20b315eb43095b14907549d8624816e2009b7a34b4926b01963dc0093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10008-021-05068-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10008-021-05068-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Bakavets, Aliaksei</creatorcontrib><creatorcontrib>Aniskevich, Yauhen</creatorcontrib><creatorcontrib>Ragoisha, Genady</creatorcontrib><creatorcontrib>Mazanik, Alexander</creatorcontrib><creatorcontrib>Tsyntsaru, Natalia</creatorcontrib><creatorcontrib>Cesiulis, Henrikas</creatorcontrib><creatorcontrib>Streltsov, Eugene</creatorcontrib><title>Electrochemistry of bismuth interlayers in (Bi2)m(Bi2Te3)n superlattice</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>Selective electrochemical transformations of bismuth interlayers in (Bi
2
)
m
(Bi
2
Te
3
)
n
superlattices can be of interest as a means of thermoelectric materials design based on bismuth telluride. In this work, the interlayers in the electrodeposited (Bi
2
)
m
(Bi
2
Te
3
)
n
superlattice structures formed by pulse potential controlled electrodeposition were characterized with electrochemical microgravimetry on quartz crystal electrodes, cyclic voltammetry, potentiodynamic electrochemical impedance spectroscopy (PDEIS), and in situ Raman spectroscopy. The oxidation potential of bismuth in the interlayers is in between the potentials of metallic bismuth and bismuth telluride anodic oxidation, which allows electrochemical detection and selective anodic dissolution of the interlayer bismuth. Microgravimetry and cyclic voltammetry have provided monitoring of bismuth interlayer dissolution and the subsequent underpotential deposition (upd) of bismuth adatoms onto Bi
2
Te
3
layers in the electrochemically created slits. PDEIS provided separate monitoring of the interfacial charge transfer, spatially restricted diffusion, capacitance of faradaic origin, and double-layer capacitance, which disclosed different variations of the electrochemical interface area in the superlattices with initial bismuth content below and above that of Bi
4
Te
3
. In situ Raman spectroscopy has monitored the removal of bismuth interlayers and distinguished different locations of Bi adatoms in two stages of Bi upd. The electrochemically created slits of molecular dimension have a potential of being used as sieves, e.g., to provide selective accessibility of the electrochemically created centers inside them to molecules and ions in multi-component solutions.</description><subject>Adatoms</subject><subject>Analytical Chemistry</subject><subject>Anodic dissolution</subject><subject>Anodizing</subject><subject>Bismuth tellurides</subject><subject>Capacitance</subject><subject>Characterization and Evaluation of Materials</subject><subject>Charge transfer</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Diffusion layers</subject><subject>Dissolution</subject><subject>Electrochemical analysis</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Energy Storage</subject><subject>Interlayers</subject><subject>Intermetallic compounds</subject><subject>Monitoring</subject><subject>Original Paper</subject><subject>Oxidation</subject><subject>Physical Chemistry</subject><subject>Quartz crystals</subject><subject>Raman spectroscopy</subject><subject>Slits</subject><subject>Spectrum analysis</subject><subject>Superlattices</subject><subject>Thermoelectric materials</subject><subject>Underpotential deposition</subject><subject>Voltammetry</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UD1PwzAUtBBIlMIfYIrEQgfD82fsEaq2IFViKbMVpy5N1STFdob8e5wGiY3l3um9u3vSIXRP4IkA5M8hISgMlGAQIBXWF2hCOGMYcqkuz5xixZW6RjchHABILglM0GpxdGX0bbl3dRWi77N2l9kq1F3cZ1UTnT8WvfMh8ezxtaKzesCNY7MmC91pOMdYle4WXe2KY3B3v3OKPpeLzfwNrz9W7_OXNS4p1RoLSjTR1FKwjAhnOQMtLOEacsH1VknKFZGOAmibF4xbrqm0QLRk2zIt2RQ9jLkn3353LkRzaDvfpJeGSuBKSAkiqeioKn0bgnc7c_JVXfjeEDBDYWYszKTCzLkwM0Sz0RSSuPly_i_6H9cP9wJqdw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Bakavets, Aliaksei</creator><creator>Aniskevich, Yauhen</creator><creator>Ragoisha, Genady</creator><creator>Mazanik, Alexander</creator><creator>Tsyntsaru, Natalia</creator><creator>Cesiulis, Henrikas</creator><creator>Streltsov, Eugene</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Electrochemistry of bismuth interlayers in (Bi2)m(Bi2Te3)n superlattice</title><author>Bakavets, Aliaksei ; Aniskevich, Yauhen ; Ragoisha, Genady ; Mazanik, Alexander ; Tsyntsaru, Natalia ; Cesiulis, Henrikas ; Streltsov, Eugene</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2299-5219192b20b315eb43095b14907549d8624816e2009b7a34b4926b01963dc0093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adatoms</topic><topic>Analytical Chemistry</topic><topic>Anodic dissolution</topic><topic>Anodizing</topic><topic>Bismuth tellurides</topic><topic>Capacitance</topic><topic>Characterization and Evaluation of Materials</topic><topic>Charge transfer</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Diffusion layers</topic><topic>Dissolution</topic><topic>Electrochemical analysis</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Energy Storage</topic><topic>Interlayers</topic><topic>Intermetallic compounds</topic><topic>Monitoring</topic><topic>Original Paper</topic><topic>Oxidation</topic><topic>Physical Chemistry</topic><topic>Quartz crystals</topic><topic>Raman spectroscopy</topic><topic>Slits</topic><topic>Spectrum analysis</topic><topic>Superlattices</topic><topic>Thermoelectric materials</topic><topic>Underpotential deposition</topic><topic>Voltammetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bakavets, Aliaksei</creatorcontrib><creatorcontrib>Aniskevich, Yauhen</creatorcontrib><creatorcontrib>Ragoisha, Genady</creatorcontrib><creatorcontrib>Mazanik, Alexander</creatorcontrib><creatorcontrib>Tsyntsaru, Natalia</creatorcontrib><creatorcontrib>Cesiulis, Henrikas</creatorcontrib><creatorcontrib>Streltsov, Eugene</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bakavets, Aliaksei</au><au>Aniskevich, Yauhen</au><au>Ragoisha, Genady</au><au>Mazanik, Alexander</au><au>Tsyntsaru, Natalia</au><au>Cesiulis, Henrikas</au><au>Streltsov, Eugene</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemistry of bismuth interlayers in (Bi2)m(Bi2Te3)n superlattice</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>25</volume><issue>12</issue><spage>2807</spage><epage>2819</epage><pages>2807-2819</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>Selective electrochemical transformations of bismuth interlayers in (Bi
2
)
m
(Bi
2
Te
3
)
n
superlattices can be of interest as a means of thermoelectric materials design based on bismuth telluride. In this work, the interlayers in the electrodeposited (Bi
2
)
m
(Bi
2
Te
3
)
n
superlattice structures formed by pulse potential controlled electrodeposition were characterized with electrochemical microgravimetry on quartz crystal electrodes, cyclic voltammetry, potentiodynamic electrochemical impedance spectroscopy (PDEIS), and in situ Raman spectroscopy. The oxidation potential of bismuth in the interlayers is in between the potentials of metallic bismuth and bismuth telluride anodic oxidation, which allows electrochemical detection and selective anodic dissolution of the interlayer bismuth. Microgravimetry and cyclic voltammetry have provided monitoring of bismuth interlayer dissolution and the subsequent underpotential deposition (upd) of bismuth adatoms onto Bi
2
Te
3
layers in the electrochemically created slits. PDEIS provided separate monitoring of the interfacial charge transfer, spatially restricted diffusion, capacitance of faradaic origin, and double-layer capacitance, which disclosed different variations of the electrochemical interface area in the superlattices with initial bismuth content below and above that of Bi
4
Te
3
. In situ Raman spectroscopy has monitored the removal of bismuth interlayers and distinguished different locations of Bi adatoms in two stages of Bi upd. The electrochemically created slits of molecular dimension have a potential of being used as sieves, e.g., to provide selective accessibility of the electrochemically created centers inside them to molecules and ions in multi-component solutions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-021-05068-9</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-8488 |
ispartof | Journal of solid state electrochemistry, 2021-12, Vol.25 (12), p.2807-2819 |
issn | 1432-8488 1433-0768 |
language | eng |
recordid | cdi_proquest_journals_2604856605 |
source | SpringerNature Journals |
subjects | Adatoms Analytical Chemistry Anodic dissolution Anodizing Bismuth tellurides Capacitance Characterization and Evaluation of Materials Charge transfer Chemistry Chemistry and Materials Science Condensed Matter Physics Diffusion layers Dissolution Electrochemical analysis Electrochemical impedance spectroscopy Electrochemistry Energy Storage Interlayers Intermetallic compounds Monitoring Original Paper Oxidation Physical Chemistry Quartz crystals Raman spectroscopy Slits Spectrum analysis Superlattices Thermoelectric materials Underpotential deposition Voltammetry |
title | Electrochemistry of bismuth interlayers in (Bi2)m(Bi2Te3)n superlattice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T04%3A00%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemistry%20of%20bismuth%20interlayers%20in%20(Bi2)m(Bi2Te3)n%20superlattice&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Bakavets,%20Aliaksei&rft.date=2021-12-01&rft.volume=25&rft.issue=12&rft.spage=2807&rft.epage=2819&rft.pages=2807-2819&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-021-05068-9&rft_dat=%3Cproquest_cross%3E2604856605%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604856605&rft_id=info:pmid/&rfr_iscdi=true |