Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic‐Synergized Multimodal Therapy
Chemodynamic therapy (CDT) uses the tumor microenvironment‐assisted intratumoral Fenton reaction for generating highly toxic hydroxyl free radicals (•OH) to achieve selective tumor treatment. However, the limited intratumoral Fenton reaction efficiency restricts the therapeutic efficacy of CDT. Rece...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2021-12, Vol.33 (48), p.e2104223-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 48 |
container_start_page | e2104223 |
container_title | Advanced materials (Weinheim) |
container_volume | 33 |
creator | Zhou, Yaofeng Fan, Siyu Feng, Lili Huang, Xiaolin Chen, Xiaoyuan |
description | Chemodynamic therapy (CDT) uses the tumor microenvironment‐assisted intratumoral Fenton reaction for generating highly toxic hydroxyl free radicals (•OH) to achieve selective tumor treatment. However, the limited intratumoral Fenton reaction efficiency restricts the therapeutic efficacy of CDT. Recent years have witnessed the impressive development of various strategies to increase the efficiency of intratumoral Fenton reaction. The introduction of these reinforcement strategies can dramatically improve the treatment efficiency of CDT and further promote the development of enhanced CDT (ECDT)‐based multimodal anticancer treatments. In this review, the authors systematically introduce these reinforcement strategies, from their basic working principles, reinforcement mechanisms to their representative clinical applications. Then, ECDT‐based multimodal anticancer therapy is discussed, including how to integrate these emerging Fenton reinforcement strategies for accelerating the development of multimodal anticancer therapy, as well as the synergistic mechanisms of ECDT and other treatment methods. Eventually, future direction and challenges of ECDT and ECDT‐based multimodal synergistic therapies are elaborated, highlighting the key scientific problems and unsolved technical bottlenecks to facilitate clinical translation.
The advances in reinforcement strategies to increase the efficiency of intratumoral Fenton reaction are discussed. Then, multimodal anticancer therapies involving enhanced chemodynamic therapy and mechanisms of synergy are highlighted. Finally, the major challenges and further improvements of this evolving field are elaborated. |
doi_str_mv | 10.1002/adma.202104223 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2604800417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604800417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4393-4779cd8e15f350d8639e5bf0db3aafb260050b6bff578f1fdd20a9f3a2ea7d803</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EgvLYskSRWKeM7TiJl1UpD6kVC2AdTWKbBiVOcRKhsOIT-Ea-BJfyECtWI82ce0a6hBxTGFMAdoaqxjEDRiFijG-RERWMhhFIsU1GILkIZRyle2S_bR8BQMYQ75I9HonUH_mI9Au05aqvsCvtQ3BtO4ddXzcOq-BC266xwXSp67Lt3BCYxgUzu0RbaPW5btRgsS6LAO3fxfvr2-1gtXsoXzy66Kuu9DfvvFtqh6vhkOwYrFp99DUPyP3F7G56Fc5vLq-nk3lYRFzyMEoSWahUU2G4AJXGXGqRG1A5RzQ5iwEE5HFujEhSQ41SDFAajkxjolLgB-R041255qnXbZc9Nr2z_mXmw1EKENHEU-MNVbimbZ022cqVNboho5CtW87WLWc_LfvAyZe2z2utfvDvWj0gN8BzWenhH102OV9MfuUfSbmMgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604800417</pqid></control><display><type>article</type><title>Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic‐Synergized Multimodal Therapy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Yaofeng ; Fan, Siyu ; Feng, Lili ; Huang, Xiaolin ; Chen, Xiaoyuan</creator><creatorcontrib>Zhou, Yaofeng ; Fan, Siyu ; Feng, Lili ; Huang, Xiaolin ; Chen, Xiaoyuan</creatorcontrib><description>Chemodynamic therapy (CDT) uses the tumor microenvironment‐assisted intratumoral Fenton reaction for generating highly toxic hydroxyl free radicals (•OH) to achieve selective tumor treatment. However, the limited intratumoral Fenton reaction efficiency restricts the therapeutic efficacy of CDT. Recent years have witnessed the impressive development of various strategies to increase the efficiency of intratumoral Fenton reaction. The introduction of these reinforcement strategies can dramatically improve the treatment efficiency of CDT and further promote the development of enhanced CDT (ECDT)‐based multimodal anticancer treatments. In this review, the authors systematically introduce these reinforcement strategies, from their basic working principles, reinforcement mechanisms to their representative clinical applications. Then, ECDT‐based multimodal anticancer therapy is discussed, including how to integrate these emerging Fenton reinforcement strategies for accelerating the development of multimodal anticancer therapy, as well as the synergistic mechanisms of ECDT and other treatment methods. Eventually, future direction and challenges of ECDT and ECDT‐based multimodal synergistic therapies are elaborated, highlighting the key scientific problems and unsolved technical bottlenecks to facilitate clinical translation.
The advances in reinforcement strategies to increase the efficiency of intratumoral Fenton reaction are discussed. Then, multimodal anticancer therapies involving enhanced chemodynamic therapy and mechanisms of synergy are highlighted. Finally, the major challenges and further improvements of this evolving field are elaborated.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202104223</identifier><identifier>PMID: 34580933</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cancer ; chemodynamic therapy ; Combined Modality Therapy ; Efficiency ; Fenton chemistry ; Free radicals ; Genetic Therapy ; Humans ; Hydrogen Peroxide - chemistry ; Hydroxyl Radical - chemistry ; Hydroxyl Radical - metabolism ; Hydroxyl Radical - therapeutic use ; Immunotherapy ; Iron - chemistry ; Materials science ; multimodal synergistic therapies ; Nanoparticles - chemistry ; Nanoparticles - therapeutic use ; Nanoparticles - toxicity ; Neoplasms - drug therapy ; Neoplasms - therapy ; Reinforcement ; reinforcement strategies ; Therapy ; Tumors ; Ultraviolet Rays</subject><ispartof>Advanced materials (Weinheim), 2021-12, Vol.33 (48), p.e2104223-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4393-4779cd8e15f350d8639e5bf0db3aafb260050b6bff578f1fdd20a9f3a2ea7d803</citedby><cites>FETCH-LOGICAL-c4393-4779cd8e15f350d8639e5bf0db3aafb260050b6bff578f1fdd20a9f3a2ea7d803</cites><orcidid>0000-0002-9622-0870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202104223$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202104223$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34580933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Yaofeng</creatorcontrib><creatorcontrib>Fan, Siyu</creatorcontrib><creatorcontrib>Feng, Lili</creatorcontrib><creatorcontrib>Huang, Xiaolin</creatorcontrib><creatorcontrib>Chen, Xiaoyuan</creatorcontrib><title>Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic‐Synergized Multimodal Therapy</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Chemodynamic therapy (CDT) uses the tumor microenvironment‐assisted intratumoral Fenton reaction for generating highly toxic hydroxyl free radicals (•OH) to achieve selective tumor treatment. However, the limited intratumoral Fenton reaction efficiency restricts the therapeutic efficacy of CDT. Recent years have witnessed the impressive development of various strategies to increase the efficiency of intratumoral Fenton reaction. The introduction of these reinforcement strategies can dramatically improve the treatment efficiency of CDT and further promote the development of enhanced CDT (ECDT)‐based multimodal anticancer treatments. In this review, the authors systematically introduce these reinforcement strategies, from their basic working principles, reinforcement mechanisms to their representative clinical applications. Then, ECDT‐based multimodal anticancer therapy is discussed, including how to integrate these emerging Fenton reinforcement strategies for accelerating the development of multimodal anticancer therapy, as well as the synergistic mechanisms of ECDT and other treatment methods. Eventually, future direction and challenges of ECDT and ECDT‐based multimodal synergistic therapies are elaborated, highlighting the key scientific problems and unsolved technical bottlenecks to facilitate clinical translation.
The advances in reinforcement strategies to increase the efficiency of intratumoral Fenton reaction are discussed. Then, multimodal anticancer therapies involving enhanced chemodynamic therapy and mechanisms of synergy are highlighted. Finally, the major challenges and further improvements of this evolving field are elaborated.</description><subject>Cancer</subject><subject>chemodynamic therapy</subject><subject>Combined Modality Therapy</subject><subject>Efficiency</subject><subject>Fenton chemistry</subject><subject>Free radicals</subject><subject>Genetic Therapy</subject><subject>Humans</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>Hydroxyl Radical - chemistry</subject><subject>Hydroxyl Radical - metabolism</subject><subject>Hydroxyl Radical - therapeutic use</subject><subject>Immunotherapy</subject><subject>Iron - chemistry</subject><subject>Materials science</subject><subject>multimodal synergistic therapies</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - therapeutic use</subject><subject>Nanoparticles - toxicity</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - therapy</subject><subject>Reinforcement</subject><subject>reinforcement strategies</subject><subject>Therapy</subject><subject>Tumors</subject><subject>Ultraviolet Rays</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EgvLYskSRWKeM7TiJl1UpD6kVC2AdTWKbBiVOcRKhsOIT-Ea-BJfyECtWI82ce0a6hBxTGFMAdoaqxjEDRiFijG-RERWMhhFIsU1GILkIZRyle2S_bR8BQMYQ75I9HonUH_mI9Au05aqvsCvtQ3BtO4ddXzcOq-BC266xwXSp67Lt3BCYxgUzu0RbaPW5btRgsS6LAO3fxfvr2-1gtXsoXzy66Kuu9DfvvFtqh6vhkOwYrFp99DUPyP3F7G56Fc5vLq-nk3lYRFzyMEoSWahUU2G4AJXGXGqRG1A5RzQ5iwEE5HFujEhSQ41SDFAajkxjolLgB-R041255qnXbZc9Nr2z_mXmw1EKENHEU-MNVbimbZ022cqVNboho5CtW87WLWc_LfvAyZe2z2utfvDvWj0gN8BzWenhH102OV9MfuUfSbmMgA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Zhou, Yaofeng</creator><creator>Fan, Siyu</creator><creator>Feng, Lili</creator><creator>Huang, Xiaolin</creator><creator>Chen, Xiaoyuan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9622-0870</orcidid></search><sort><creationdate>20211201</creationdate><title>Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic‐Synergized Multimodal Therapy</title><author>Zhou, Yaofeng ; Fan, Siyu ; Feng, Lili ; Huang, Xiaolin ; Chen, Xiaoyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4393-4779cd8e15f350d8639e5bf0db3aafb260050b6bff578f1fdd20a9f3a2ea7d803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cancer</topic><topic>chemodynamic therapy</topic><topic>Combined Modality Therapy</topic><topic>Efficiency</topic><topic>Fenton chemistry</topic><topic>Free radicals</topic><topic>Genetic Therapy</topic><topic>Humans</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>Hydroxyl Radical - chemistry</topic><topic>Hydroxyl Radical - metabolism</topic><topic>Hydroxyl Radical - therapeutic use</topic><topic>Immunotherapy</topic><topic>Iron - chemistry</topic><topic>Materials science</topic><topic>multimodal synergistic therapies</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - therapeutic use</topic><topic>Nanoparticles - toxicity</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - therapy</topic><topic>Reinforcement</topic><topic>reinforcement strategies</topic><topic>Therapy</topic><topic>Tumors</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yaofeng</creatorcontrib><creatorcontrib>Fan, Siyu</creatorcontrib><creatorcontrib>Feng, Lili</creatorcontrib><creatorcontrib>Huang, Xiaolin</creatorcontrib><creatorcontrib>Chen, Xiaoyuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yaofeng</au><au>Fan, Siyu</au><au>Feng, Lili</au><au>Huang, Xiaolin</au><au>Chen, Xiaoyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic‐Synergized Multimodal Therapy</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>33</volume><issue>48</issue><spage>e2104223</spage><epage>n/a</epage><pages>e2104223-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Chemodynamic therapy (CDT) uses the tumor microenvironment‐assisted intratumoral Fenton reaction for generating highly toxic hydroxyl free radicals (•OH) to achieve selective tumor treatment. However, the limited intratumoral Fenton reaction efficiency restricts the therapeutic efficacy of CDT. Recent years have witnessed the impressive development of various strategies to increase the efficiency of intratumoral Fenton reaction. The introduction of these reinforcement strategies can dramatically improve the treatment efficiency of CDT and further promote the development of enhanced CDT (ECDT)‐based multimodal anticancer treatments. In this review, the authors systematically introduce these reinforcement strategies, from their basic working principles, reinforcement mechanisms to their representative clinical applications. Then, ECDT‐based multimodal anticancer therapy is discussed, including how to integrate these emerging Fenton reinforcement strategies for accelerating the development of multimodal anticancer therapy, as well as the synergistic mechanisms of ECDT and other treatment methods. Eventually, future direction and challenges of ECDT and ECDT‐based multimodal synergistic therapies are elaborated, highlighting the key scientific problems and unsolved technical bottlenecks to facilitate clinical translation.
The advances in reinforcement strategies to increase the efficiency of intratumoral Fenton reaction are discussed. Then, multimodal anticancer therapies involving enhanced chemodynamic therapy and mechanisms of synergy are highlighted. Finally, the major challenges and further improvements of this evolving field are elaborated.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34580933</pmid><doi>10.1002/adma.202104223</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-9622-0870</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2021-12, Vol.33 (48), p.e2104223-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_journals_2604800417 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Cancer chemodynamic therapy Combined Modality Therapy Efficiency Fenton chemistry Free radicals Genetic Therapy Humans Hydrogen Peroxide - chemistry Hydroxyl Radical - chemistry Hydroxyl Radical - metabolism Hydroxyl Radical - therapeutic use Immunotherapy Iron - chemistry Materials science multimodal synergistic therapies Nanoparticles - chemistry Nanoparticles - therapeutic use Nanoparticles - toxicity Neoplasms - drug therapy Neoplasms - therapy Reinforcement reinforcement strategies Therapy Tumors Ultraviolet Rays |
title | Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic‐Synergized Multimodal Therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulating%20Intratumoral%20Fenton%20Chemistry%20for%20Enhanced%20Chemodynamic%20and%20Chemodynamic%E2%80%90Synergized%20Multimodal%20Therapy&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhou,%20Yaofeng&rft.date=2021-12-01&rft.volume=33&rft.issue=48&rft.spage=e2104223&rft.epage=n/a&rft.pages=e2104223-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202104223&rft_dat=%3Cproquest_cross%3E2604800417%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604800417&rft_id=info:pmid/34580933&rfr_iscdi=true |