Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic‐Synergized Multimodal Therapy

Chemodynamic therapy (CDT) uses the tumor microenvironment‐assisted intratumoral Fenton reaction for generating highly toxic hydroxyl free radicals (•OH) to achieve selective tumor treatment. However, the limited intratumoral Fenton reaction efficiency restricts the therapeutic efficacy of CDT. Rece...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2021-12, Vol.33 (48), p.e2104223-n/a
Hauptverfasser: Zhou, Yaofeng, Fan, Siyu, Feng, Lili, Huang, Xiaolin, Chen, Xiaoyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 48
container_start_page e2104223
container_title Advanced materials (Weinheim)
container_volume 33
creator Zhou, Yaofeng
Fan, Siyu
Feng, Lili
Huang, Xiaolin
Chen, Xiaoyuan
description Chemodynamic therapy (CDT) uses the tumor microenvironment‐assisted intratumoral Fenton reaction for generating highly toxic hydroxyl free radicals (•OH) to achieve selective tumor treatment. However, the limited intratumoral Fenton reaction efficiency restricts the therapeutic efficacy of CDT. Recent years have witnessed the impressive development of various strategies to increase the efficiency of intratumoral Fenton reaction. The introduction of these reinforcement strategies can dramatically improve the treatment efficiency of CDT and further promote the development of enhanced CDT (ECDT)‐based multimodal anticancer treatments. In this review, the authors systematically introduce these reinforcement strategies, from their basic working principles, reinforcement mechanisms to their representative clinical applications. Then, ECDT‐based multimodal anticancer therapy is discussed, including how to integrate these emerging Fenton reinforcement strategies for accelerating the development of multimodal anticancer therapy, as well as the synergistic mechanisms of ECDT and other treatment methods. Eventually, future direction and challenges of ECDT and ECDT‐based multimodal synergistic therapies are elaborated, highlighting the key scientific problems and unsolved technical bottlenecks to facilitate clinical translation. The advances in reinforcement strategies to increase the efficiency of intratumoral Fenton reaction are discussed. Then, multimodal anticancer therapies involving enhanced chemodynamic therapy and mechanisms of synergy are highlighted. Finally, the major challenges and further improvements of this evolving field are elaborated.
doi_str_mv 10.1002/adma.202104223
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2604800417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604800417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4393-4779cd8e15f350d8639e5bf0db3aafb260050b6bff578f1fdd20a9f3a2ea7d803</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EgvLYskSRWKeM7TiJl1UpD6kVC2AdTWKbBiVOcRKhsOIT-Ea-BJfyECtWI82ce0a6hBxTGFMAdoaqxjEDRiFijG-RERWMhhFIsU1GILkIZRyle2S_bR8BQMYQ75I9HonUH_mI9Au05aqvsCvtQ3BtO4ddXzcOq-BC266xwXSp67Lt3BCYxgUzu0RbaPW5btRgsS6LAO3fxfvr2-1gtXsoXzy66Kuu9DfvvFtqh6vhkOwYrFp99DUPyP3F7G56Fc5vLq-nk3lYRFzyMEoSWahUU2G4AJXGXGqRG1A5RzQ5iwEE5HFujEhSQ41SDFAajkxjolLgB-R041255qnXbZc9Nr2z_mXmw1EKENHEU-MNVbimbZ022cqVNboho5CtW87WLWc_LfvAyZe2z2utfvDvWj0gN8BzWenhH102OV9MfuUfSbmMgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604800417</pqid></control><display><type>article</type><title>Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic‐Synergized Multimodal Therapy</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhou, Yaofeng ; Fan, Siyu ; Feng, Lili ; Huang, Xiaolin ; Chen, Xiaoyuan</creator><creatorcontrib>Zhou, Yaofeng ; Fan, Siyu ; Feng, Lili ; Huang, Xiaolin ; Chen, Xiaoyuan</creatorcontrib><description>Chemodynamic therapy (CDT) uses the tumor microenvironment‐assisted intratumoral Fenton reaction for generating highly toxic hydroxyl free radicals (•OH) to achieve selective tumor treatment. However, the limited intratumoral Fenton reaction efficiency restricts the therapeutic efficacy of CDT. Recent years have witnessed the impressive development of various strategies to increase the efficiency of intratumoral Fenton reaction. The introduction of these reinforcement strategies can dramatically improve the treatment efficiency of CDT and further promote the development of enhanced CDT (ECDT)‐based multimodal anticancer treatments. In this review, the authors systematically introduce these reinforcement strategies, from their basic working principles, reinforcement mechanisms to their representative clinical applications. Then, ECDT‐based multimodal anticancer therapy is discussed, including how to integrate these emerging Fenton reinforcement strategies for accelerating the development of multimodal anticancer therapy, as well as the synergistic mechanisms of ECDT and other treatment methods. Eventually, future direction and challenges of ECDT and ECDT‐based multimodal synergistic therapies are elaborated, highlighting the key scientific problems and unsolved technical bottlenecks to facilitate clinical translation. The advances in reinforcement strategies to increase the efficiency of intratumoral Fenton reaction are discussed. Then, multimodal anticancer therapies involving enhanced chemodynamic therapy and mechanisms of synergy are highlighted. Finally, the major challenges and further improvements of this evolving field are elaborated.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202104223</identifier><identifier>PMID: 34580933</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cancer ; chemodynamic therapy ; Combined Modality Therapy ; Efficiency ; Fenton chemistry ; Free radicals ; Genetic Therapy ; Humans ; Hydrogen Peroxide - chemistry ; Hydroxyl Radical - chemistry ; Hydroxyl Radical - metabolism ; Hydroxyl Radical - therapeutic use ; Immunotherapy ; Iron - chemistry ; Materials science ; multimodal synergistic therapies ; Nanoparticles - chemistry ; Nanoparticles - therapeutic use ; Nanoparticles - toxicity ; Neoplasms - drug therapy ; Neoplasms - therapy ; Reinforcement ; reinforcement strategies ; Therapy ; Tumors ; Ultraviolet Rays</subject><ispartof>Advanced materials (Weinheim), 2021-12, Vol.33 (48), p.e2104223-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4393-4779cd8e15f350d8639e5bf0db3aafb260050b6bff578f1fdd20a9f3a2ea7d803</citedby><cites>FETCH-LOGICAL-c4393-4779cd8e15f350d8639e5bf0db3aafb260050b6bff578f1fdd20a9f3a2ea7d803</cites><orcidid>0000-0002-9622-0870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202104223$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202104223$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34580933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Yaofeng</creatorcontrib><creatorcontrib>Fan, Siyu</creatorcontrib><creatorcontrib>Feng, Lili</creatorcontrib><creatorcontrib>Huang, Xiaolin</creatorcontrib><creatorcontrib>Chen, Xiaoyuan</creatorcontrib><title>Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic‐Synergized Multimodal Therapy</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Chemodynamic therapy (CDT) uses the tumor microenvironment‐assisted intratumoral Fenton reaction for generating highly toxic hydroxyl free radicals (•OH) to achieve selective tumor treatment. However, the limited intratumoral Fenton reaction efficiency restricts the therapeutic efficacy of CDT. Recent years have witnessed the impressive development of various strategies to increase the efficiency of intratumoral Fenton reaction. The introduction of these reinforcement strategies can dramatically improve the treatment efficiency of CDT and further promote the development of enhanced CDT (ECDT)‐based multimodal anticancer treatments. In this review, the authors systematically introduce these reinforcement strategies, from their basic working principles, reinforcement mechanisms to their representative clinical applications. Then, ECDT‐based multimodal anticancer therapy is discussed, including how to integrate these emerging Fenton reinforcement strategies for accelerating the development of multimodal anticancer therapy, as well as the synergistic mechanisms of ECDT and other treatment methods. Eventually, future direction and challenges of ECDT and ECDT‐based multimodal synergistic therapies are elaborated, highlighting the key scientific problems and unsolved technical bottlenecks to facilitate clinical translation. The advances in reinforcement strategies to increase the efficiency of intratumoral Fenton reaction are discussed. Then, multimodal anticancer therapies involving enhanced chemodynamic therapy and mechanisms of synergy are highlighted. Finally, the major challenges and further improvements of this evolving field are elaborated.</description><subject>Cancer</subject><subject>chemodynamic therapy</subject><subject>Combined Modality Therapy</subject><subject>Efficiency</subject><subject>Fenton chemistry</subject><subject>Free radicals</subject><subject>Genetic Therapy</subject><subject>Humans</subject><subject>Hydrogen Peroxide - chemistry</subject><subject>Hydroxyl Radical - chemistry</subject><subject>Hydroxyl Radical - metabolism</subject><subject>Hydroxyl Radical - therapeutic use</subject><subject>Immunotherapy</subject><subject>Iron - chemistry</subject><subject>Materials science</subject><subject>multimodal synergistic therapies</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - therapeutic use</subject><subject>Nanoparticles - toxicity</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - therapy</subject><subject>Reinforcement</subject><subject>reinforcement strategies</subject><subject>Therapy</subject><subject>Tumors</subject><subject>Ultraviolet Rays</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EgvLYskSRWKeM7TiJl1UpD6kVC2AdTWKbBiVOcRKhsOIT-Ea-BJfyECtWI82ce0a6hBxTGFMAdoaqxjEDRiFijG-RERWMhhFIsU1GILkIZRyle2S_bR8BQMYQ75I9HonUH_mI9Au05aqvsCvtQ3BtO4ddXzcOq-BC266xwXSp67Lt3BCYxgUzu0RbaPW5btRgsS6LAO3fxfvr2-1gtXsoXzy66Kuu9DfvvFtqh6vhkOwYrFp99DUPyP3F7G56Fc5vLq-nk3lYRFzyMEoSWahUU2G4AJXGXGqRG1A5RzQ5iwEE5HFujEhSQ41SDFAajkxjolLgB-R041255qnXbZc9Nr2z_mXmw1EKENHEU-MNVbimbZ022cqVNboho5CtW87WLWc_LfvAyZe2z2utfvDvWj0gN8BzWenhH102OV9MfuUfSbmMgA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Zhou, Yaofeng</creator><creator>Fan, Siyu</creator><creator>Feng, Lili</creator><creator>Huang, Xiaolin</creator><creator>Chen, Xiaoyuan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-9622-0870</orcidid></search><sort><creationdate>20211201</creationdate><title>Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic‐Synergized Multimodal Therapy</title><author>Zhou, Yaofeng ; Fan, Siyu ; Feng, Lili ; Huang, Xiaolin ; Chen, Xiaoyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4393-4779cd8e15f350d8639e5bf0db3aafb260050b6bff578f1fdd20a9f3a2ea7d803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cancer</topic><topic>chemodynamic therapy</topic><topic>Combined Modality Therapy</topic><topic>Efficiency</topic><topic>Fenton chemistry</topic><topic>Free radicals</topic><topic>Genetic Therapy</topic><topic>Humans</topic><topic>Hydrogen Peroxide - chemistry</topic><topic>Hydroxyl Radical - chemistry</topic><topic>Hydroxyl Radical - metabolism</topic><topic>Hydroxyl Radical - therapeutic use</topic><topic>Immunotherapy</topic><topic>Iron - chemistry</topic><topic>Materials science</topic><topic>multimodal synergistic therapies</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - therapeutic use</topic><topic>Nanoparticles - toxicity</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - therapy</topic><topic>Reinforcement</topic><topic>reinforcement strategies</topic><topic>Therapy</topic><topic>Tumors</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yaofeng</creatorcontrib><creatorcontrib>Fan, Siyu</creatorcontrib><creatorcontrib>Feng, Lili</creatorcontrib><creatorcontrib>Huang, Xiaolin</creatorcontrib><creatorcontrib>Chen, Xiaoyuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yaofeng</au><au>Fan, Siyu</au><au>Feng, Lili</au><au>Huang, Xiaolin</au><au>Chen, Xiaoyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic‐Synergized Multimodal Therapy</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>33</volume><issue>48</issue><spage>e2104223</spage><epage>n/a</epage><pages>e2104223-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Chemodynamic therapy (CDT) uses the tumor microenvironment‐assisted intratumoral Fenton reaction for generating highly toxic hydroxyl free radicals (•OH) to achieve selective tumor treatment. However, the limited intratumoral Fenton reaction efficiency restricts the therapeutic efficacy of CDT. Recent years have witnessed the impressive development of various strategies to increase the efficiency of intratumoral Fenton reaction. The introduction of these reinforcement strategies can dramatically improve the treatment efficiency of CDT and further promote the development of enhanced CDT (ECDT)‐based multimodal anticancer treatments. In this review, the authors systematically introduce these reinforcement strategies, from their basic working principles, reinforcement mechanisms to their representative clinical applications. Then, ECDT‐based multimodal anticancer therapy is discussed, including how to integrate these emerging Fenton reinforcement strategies for accelerating the development of multimodal anticancer therapy, as well as the synergistic mechanisms of ECDT and other treatment methods. Eventually, future direction and challenges of ECDT and ECDT‐based multimodal synergistic therapies are elaborated, highlighting the key scientific problems and unsolved technical bottlenecks to facilitate clinical translation. The advances in reinforcement strategies to increase the efficiency of intratumoral Fenton reaction are discussed. Then, multimodal anticancer therapies involving enhanced chemodynamic therapy and mechanisms of synergy are highlighted. Finally, the major challenges and further improvements of this evolving field are elaborated.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34580933</pmid><doi>10.1002/adma.202104223</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0002-9622-0870</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2021-12, Vol.33 (48), p.e2104223-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_journals_2604800417
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Cancer
chemodynamic therapy
Combined Modality Therapy
Efficiency
Fenton chemistry
Free radicals
Genetic Therapy
Humans
Hydrogen Peroxide - chemistry
Hydroxyl Radical - chemistry
Hydroxyl Radical - metabolism
Hydroxyl Radical - therapeutic use
Immunotherapy
Iron - chemistry
Materials science
multimodal synergistic therapies
Nanoparticles - chemistry
Nanoparticles - therapeutic use
Nanoparticles - toxicity
Neoplasms - drug therapy
Neoplasms - therapy
Reinforcement
reinforcement strategies
Therapy
Tumors
Ultraviolet Rays
title Manipulating Intratumoral Fenton Chemistry for Enhanced Chemodynamic and Chemodynamic‐Synergized Multimodal Therapy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Manipulating%20Intratumoral%20Fenton%20Chemistry%20for%20Enhanced%20Chemodynamic%20and%20Chemodynamic%E2%80%90Synergized%20Multimodal%20Therapy&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Zhou,%20Yaofeng&rft.date=2021-12-01&rft.volume=33&rft.issue=48&rft.spage=e2104223&rft.epage=n/a&rft.pages=e2104223-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202104223&rft_dat=%3Cproquest_cross%3E2604800417%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604800417&rft_id=info:pmid/34580933&rfr_iscdi=true