Microstructure and properties of poly(butylene terephthalate)/poly(ethylene terephthalate) composites based on carbon nanotubes/graphene nanoplatelets hybrid filler systems

This work describes the preparation of poly(butylene terephthalate) (PBT)/poly(ethylene terephthalate) (PET) composites using carbon nanotubes (CNTs)/graphene nanoplatelets (GNPs) hybrid fillers by melt blending process. The effects of CNTs/GNPs hybrid fillers on the thermal conductivity, electrical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2022-03, Vol.139 (9), p.n/a
Hauptverfasser: Gao, Zhuyi, Dong, Qunfeng, Shang, Mengyao, Shentu, Baoqing, Wu, Chinan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Journal of applied polymer science
container_volume 139
creator Gao, Zhuyi
Dong, Qunfeng
Shang, Mengyao
Shentu, Baoqing
Wu, Chinan
description This work describes the preparation of poly(butylene terephthalate) (PBT)/poly(ethylene terephthalate) (PET) composites using carbon nanotubes (CNTs)/graphene nanoplatelets (GNPs) hybrid fillers by melt blending process. The effects of CNTs/GNPs hybrid fillers on the thermal conductivity, electrical conductivity, electromagnetic interference shielding effectiveness (EMI SE) and mechanical properties of composites with varying CNTs/GNPs weight ratios were investigated. Scanning electron microscopy showed that the CNTs/GNPs hybrid fillers had better dispersion in PBT/PET matrix, they could effectively cooperate to build filler network structure. The excellent synergistic effects of hybrid fillers could significantly improve the mechanical properties and thermal conductivity. When adding 2 phr CNTs and 8 phr GNPs simultaneously, the thermal conductivity reached 0.84 W m−1 K−1 and Young's modulus was 1.2‐fold compared with PBT/PET blends. In addition, all hybrid composites with higher CNTs/GNPs weight ratios showed better electrical conductivity and EMI SE. The measurement of EMI SE and study of shielding mechanism indicated that absorption loss was the main mechanism for the attenuation of incident electromagnetic waves in hybrid composites over X‐band frequency. In poly(butylene terephthalate) (PBT)/poly(ethylene terephthalate) (PET)/carbon nanotubes (CNTs)/graphene nanoplatelets (GNPs) composites, the filler network structure originates from the bridging between CNTs and GNPs which leads to a synergistic effect in the improvement of thermal conductivity. The composites with electrical conductivity generate conductivity loss, the interface between fillers and polymer matrix will cause interface polarization loss, and the GNPs interlayer can cause multiple reflection loss. These losses are the reason why the composites have shielding effectiveness.
doi_str_mv 10.1002/app.51733
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2604788008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604788008</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2233-18da9d96bf67b3ab9dcd89a39aaa25940236b13666f260e334f5cc726b7c544b3</originalsourceid><addsrcrecordid>eNptUctOwzAQtBBIlMKBP7DEBQ5p7Dhx4mNV8ZKK6AHOlp1sSKo0NrYjlH_iI0kKR06z2nmstIPQNSUrSkgSK2tXGc0ZO0ELSkQepTwpTtFi4mhUCJGdowvv94RQmhG-QN8vbemMD24ow-AAq77C1hkLLrTgsamxNd14q4cwdtADDuDANqFRnQpwFx9JCM1_JC7NwRrfhilHKw8VNj0uldMT9Ko3YdDg4w-nbDOb55WdjR0Ej5tRu7bCddt14LAffYCDv0Rnteo8XP3hEr0_3L9tnqLt6-PzZr2NbJIwFtGiUqISXNc810xpUZVVIRQTSqkkEylJGNeUcc7rhBNgLK2zsswTrvMyS1PNlujmN3f6xOcAPsi9GVw_nZSTIc2LgpBiUsW_qq-2g1Fa1x6UGyUlcm5CTk3IYxNyvdsdB_YDUjKDnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604788008</pqid></control><display><type>article</type><title>Microstructure and properties of poly(butylene terephthalate)/poly(ethylene terephthalate) composites based on carbon nanotubes/graphene nanoplatelets hybrid filler systems</title><source>Wiley-Blackwell Journals</source><creator>Gao, Zhuyi ; Dong, Qunfeng ; Shang, Mengyao ; Shentu, Baoqing ; Wu, Chinan</creator><creatorcontrib>Gao, Zhuyi ; Dong, Qunfeng ; Shang, Mengyao ; Shentu, Baoqing ; Wu, Chinan</creatorcontrib><description>This work describes the preparation of poly(butylene terephthalate) (PBT)/poly(ethylene terephthalate) (PET) composites using carbon nanotubes (CNTs)/graphene nanoplatelets (GNPs) hybrid fillers by melt blending process. The effects of CNTs/GNPs hybrid fillers on the thermal conductivity, electrical conductivity, electromagnetic interference shielding effectiveness (EMI SE) and mechanical properties of composites with varying CNTs/GNPs weight ratios were investigated. Scanning electron microscopy showed that the CNTs/GNPs hybrid fillers had better dispersion in PBT/PET matrix, they could effectively cooperate to build filler network structure. The excellent synergistic effects of hybrid fillers could significantly improve the mechanical properties and thermal conductivity. When adding 2 phr CNTs and 8 phr GNPs simultaneously, the thermal conductivity reached 0.84 W m−1 K−1 and Young's modulus was 1.2‐fold compared with PBT/PET blends. In addition, all hybrid composites with higher CNTs/GNPs weight ratios showed better electrical conductivity and EMI SE. The measurement of EMI SE and study of shielding mechanism indicated that absorption loss was the main mechanism for the attenuation of incident electromagnetic waves in hybrid composites over X‐band frequency. In poly(butylene terephthalate) (PBT)/poly(ethylene terephthalate) (PET)/carbon nanotubes (CNTs)/graphene nanoplatelets (GNPs) composites, the filler network structure originates from the bridging between CNTs and GNPs which leads to a synergistic effect in the improvement of thermal conductivity. The composites with electrical conductivity generate conductivity loss, the interface between fillers and polymer matrix will cause interface polarization loss, and the GNPs interlayer can cause multiple reflection loss. These losses are the reason why the composites have shielding effectiveness.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.51733</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Blending effects ; Carbon nanotubes ; composites ; Electrical resistivity ; Electromagnetic radiation ; Electromagnetic shielding ; Fillers ; Graphene ; graphene and fullerenes ; Heat conductivity ; Heat transfer ; Hybrid composites ; Hybrid systems ; Materials science ; Mechanical properties ; Melt blending ; Modulus of elasticity ; morphology ; nanotubes ; Polybutylene terephthalates ; Polyethylene terephthalate ; Polymers ; Synergistic effect ; Thermal conductivity ; thermoplastics ; Wave attenuation</subject><ispartof>Journal of applied polymer science, 2022-03, Vol.139 (9), p.n/a</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5684-7468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.51733$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.51733$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Gao, Zhuyi</creatorcontrib><creatorcontrib>Dong, Qunfeng</creatorcontrib><creatorcontrib>Shang, Mengyao</creatorcontrib><creatorcontrib>Shentu, Baoqing</creatorcontrib><creatorcontrib>Wu, Chinan</creatorcontrib><title>Microstructure and properties of poly(butylene terephthalate)/poly(ethylene terephthalate) composites based on carbon nanotubes/graphene nanoplatelets hybrid filler systems</title><title>Journal of applied polymer science</title><description>This work describes the preparation of poly(butylene terephthalate) (PBT)/poly(ethylene terephthalate) (PET) composites using carbon nanotubes (CNTs)/graphene nanoplatelets (GNPs) hybrid fillers by melt blending process. The effects of CNTs/GNPs hybrid fillers on the thermal conductivity, electrical conductivity, electromagnetic interference shielding effectiveness (EMI SE) and mechanical properties of composites with varying CNTs/GNPs weight ratios were investigated. Scanning electron microscopy showed that the CNTs/GNPs hybrid fillers had better dispersion in PBT/PET matrix, they could effectively cooperate to build filler network structure. The excellent synergistic effects of hybrid fillers could significantly improve the mechanical properties and thermal conductivity. When adding 2 phr CNTs and 8 phr GNPs simultaneously, the thermal conductivity reached 0.84 W m−1 K−1 and Young's modulus was 1.2‐fold compared with PBT/PET blends. In addition, all hybrid composites with higher CNTs/GNPs weight ratios showed better electrical conductivity and EMI SE. The measurement of EMI SE and study of shielding mechanism indicated that absorption loss was the main mechanism for the attenuation of incident electromagnetic waves in hybrid composites over X‐band frequency. In poly(butylene terephthalate) (PBT)/poly(ethylene terephthalate) (PET)/carbon nanotubes (CNTs)/graphene nanoplatelets (GNPs) composites, the filler network structure originates from the bridging between CNTs and GNPs which leads to a synergistic effect in the improvement of thermal conductivity. The composites with electrical conductivity generate conductivity loss, the interface between fillers and polymer matrix will cause interface polarization loss, and the GNPs interlayer can cause multiple reflection loss. These losses are the reason why the composites have shielding effectiveness.</description><subject>Blending effects</subject><subject>Carbon nanotubes</subject><subject>composites</subject><subject>Electrical resistivity</subject><subject>Electromagnetic radiation</subject><subject>Electromagnetic shielding</subject><subject>Fillers</subject><subject>Graphene</subject><subject>graphene and fullerenes</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Hybrid composites</subject><subject>Hybrid systems</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>Melt blending</subject><subject>Modulus of elasticity</subject><subject>morphology</subject><subject>nanotubes</subject><subject>Polybutylene terephthalates</subject><subject>Polyethylene terephthalate</subject><subject>Polymers</subject><subject>Synergistic effect</subject><subject>Thermal conductivity</subject><subject>thermoplastics</subject><subject>Wave attenuation</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptUctOwzAQtBBIlMKBP7DEBQ5p7Dhx4mNV8ZKK6AHOlp1sSKo0NrYjlH_iI0kKR06z2nmstIPQNSUrSkgSK2tXGc0ZO0ELSkQepTwpTtFi4mhUCJGdowvv94RQmhG-QN8vbemMD24ow-AAq77C1hkLLrTgsamxNd14q4cwdtADDuDANqFRnQpwFx9JCM1_JC7NwRrfhilHKw8VNj0uldMT9Ko3YdDg4w-nbDOb55WdjR0Ej5tRu7bCddt14LAffYCDv0Rnteo8XP3hEr0_3L9tnqLt6-PzZr2NbJIwFtGiUqISXNc810xpUZVVIRQTSqkkEylJGNeUcc7rhBNgLK2zsswTrvMyS1PNlujmN3f6xOcAPsi9GVw_nZSTIc2LgpBiUsW_qq-2g1Fa1x6UGyUlcm5CTk3IYxNyvdsdB_YDUjKDnw</recordid><startdate>20220305</startdate><enddate>20220305</enddate><creator>Gao, Zhuyi</creator><creator>Dong, Qunfeng</creator><creator>Shang, Mengyao</creator><creator>Shentu, Baoqing</creator><creator>Wu, Chinan</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-5684-7468</orcidid></search><sort><creationdate>20220305</creationdate><title>Microstructure and properties of poly(butylene terephthalate)/poly(ethylene terephthalate) composites based on carbon nanotubes/graphene nanoplatelets hybrid filler systems</title><author>Gao, Zhuyi ; Dong, Qunfeng ; Shang, Mengyao ; Shentu, Baoqing ; Wu, Chinan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2233-18da9d96bf67b3ab9dcd89a39aaa25940236b13666f260e334f5cc726b7c544b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Blending effects</topic><topic>Carbon nanotubes</topic><topic>composites</topic><topic>Electrical resistivity</topic><topic>Electromagnetic radiation</topic><topic>Electromagnetic shielding</topic><topic>Fillers</topic><topic>Graphene</topic><topic>graphene and fullerenes</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Hybrid composites</topic><topic>Hybrid systems</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>Melt blending</topic><topic>Modulus of elasticity</topic><topic>morphology</topic><topic>nanotubes</topic><topic>Polybutylene terephthalates</topic><topic>Polyethylene terephthalate</topic><topic>Polymers</topic><topic>Synergistic effect</topic><topic>Thermal conductivity</topic><topic>thermoplastics</topic><topic>Wave attenuation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Zhuyi</creatorcontrib><creatorcontrib>Dong, Qunfeng</creatorcontrib><creatorcontrib>Shang, Mengyao</creatorcontrib><creatorcontrib>Shentu, Baoqing</creatorcontrib><creatorcontrib>Wu, Chinan</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Zhuyi</au><au>Dong, Qunfeng</au><au>Shang, Mengyao</au><au>Shentu, Baoqing</au><au>Wu, Chinan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and properties of poly(butylene terephthalate)/poly(ethylene terephthalate) composites based on carbon nanotubes/graphene nanoplatelets hybrid filler systems</atitle><jtitle>Journal of applied polymer science</jtitle><date>2022-03-05</date><risdate>2022</risdate><volume>139</volume><issue>9</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>This work describes the preparation of poly(butylene terephthalate) (PBT)/poly(ethylene terephthalate) (PET) composites using carbon nanotubes (CNTs)/graphene nanoplatelets (GNPs) hybrid fillers by melt blending process. The effects of CNTs/GNPs hybrid fillers on the thermal conductivity, electrical conductivity, electromagnetic interference shielding effectiveness (EMI SE) and mechanical properties of composites with varying CNTs/GNPs weight ratios were investigated. Scanning electron microscopy showed that the CNTs/GNPs hybrid fillers had better dispersion in PBT/PET matrix, they could effectively cooperate to build filler network structure. The excellent synergistic effects of hybrid fillers could significantly improve the mechanical properties and thermal conductivity. When adding 2 phr CNTs and 8 phr GNPs simultaneously, the thermal conductivity reached 0.84 W m−1 K−1 and Young's modulus was 1.2‐fold compared with PBT/PET blends. In addition, all hybrid composites with higher CNTs/GNPs weight ratios showed better electrical conductivity and EMI SE. The measurement of EMI SE and study of shielding mechanism indicated that absorption loss was the main mechanism for the attenuation of incident electromagnetic waves in hybrid composites over X‐band frequency. In poly(butylene terephthalate) (PBT)/poly(ethylene terephthalate) (PET)/carbon nanotubes (CNTs)/graphene nanoplatelets (GNPs) composites, the filler network structure originates from the bridging between CNTs and GNPs which leads to a synergistic effect in the improvement of thermal conductivity. The composites with electrical conductivity generate conductivity loss, the interface between fillers and polymer matrix will cause interface polarization loss, and the GNPs interlayer can cause multiple reflection loss. These losses are the reason why the composites have shielding effectiveness.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.51733</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5684-7468</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2022-03, Vol.139 (9), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2604788008
source Wiley-Blackwell Journals
subjects Blending effects
Carbon nanotubes
composites
Electrical resistivity
Electromagnetic radiation
Electromagnetic shielding
Fillers
Graphene
graphene and fullerenes
Heat conductivity
Heat transfer
Hybrid composites
Hybrid systems
Materials science
Mechanical properties
Melt blending
Modulus of elasticity
morphology
nanotubes
Polybutylene terephthalates
Polyethylene terephthalate
Polymers
Synergistic effect
Thermal conductivity
thermoplastics
Wave attenuation
title Microstructure and properties of poly(butylene terephthalate)/poly(ethylene terephthalate) composites based on carbon nanotubes/graphene nanoplatelets hybrid filler systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A43%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20properties%20of%20poly(butylene%20terephthalate)/poly(ethylene%20terephthalate)%20composites%20based%20on%20carbon%20nanotubes/graphene%20nanoplatelets%20hybrid%20filler%20systems&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Gao,%20Zhuyi&rft.date=2022-03-05&rft.volume=139&rft.issue=9&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.51733&rft_dat=%3Cproquest_wiley%3E2604788008%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604788008&rft_id=info:pmid/&rfr_iscdi=true