Cooling Improves Cosmic Microwave Background Map-making when Low-frequency Noise is Large

In the context of cosmic microwave background data analysis, we study the solution to the equation that transforms scanning data into a map. As originally suggested in “messenger” methods for solving linear systems, we split the noise covariance into uniform and nonuniform parts and adjust their rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-12, Vol.922 (2), p.97
Hauptverfasser: Chiang, Bai-Chiang, Huffenberger, Kevin M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 97
container_title The Astrophysical journal
container_volume 922
creator Chiang, Bai-Chiang
Huffenberger, Kevin M.
description In the context of cosmic microwave background data analysis, we study the solution to the equation that transforms scanning data into a map. As originally suggested in “messenger” methods for solving linear systems, we split the noise covariance into uniform and nonuniform parts and adjust their relative weights during the iterative solution. With simulations, we study mock instrumental data with different noise properties, and find that this “cooling” or perturbative approach is particularly effective when there is significant low-frequency noise in the timestream. In such cases, a conjugate gradient algorithm applied to this modified system converges faster and to a higher fidelity solution than the standard conjugate gradient approach. We give an analytic estimate for the parameter that controls how gradually the linear system should change during the course of the solution.
doi_str_mv 10.3847/1538-4357/ac31ab
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2604553656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604553656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-9ee9b3a002113fc775882f6bc851553f3d0b365c964362c780a74b9cb35272a73</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EEqWwM1qCkVDHF9vxCBUflVJYQILJclynpG3iYPdD_e9JFAQLYjrd6Xfv3j2EzmNyDWkiRjGDNEqAiZE2EOv8AA1-RodoQAhJIg7i7RidhLDoWirlAL2PnVuV9RxPqsa7rQ147EJVGjwtjXc7vbX4Vpvl3LtNPcNT3USVXnb87sPWOHO7qPD2c2Nrs8dPrgwWlwFn2s_tKToq9CrYs-86RK_3dy_jxyh7fpiMb7LIgJDrSForc9CE0DiGwgjB0pQWPDcpixmDAmYkB86M5AlwakRKtEhyaXJgVFAtYIguet3Wf2skrNXCbXzdnlSUk6TV4Iy3FOmp9qsQvC1U48tK-72KieoCVF1aqktL9QG2K1f9SumaX81_8Ms_cN0slKRUUSWFamYFfAFlFX2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604553656</pqid></control><display><type>article</type><title>Cooling Improves Cosmic Microwave Background Map-making when Low-frequency Noise is Large</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Chiang, Bai-Chiang ; Huffenberger, Kevin M.</creator><creatorcontrib>Chiang, Bai-Chiang ; Huffenberger, Kevin M.</creatorcontrib><description>In the context of cosmic microwave background data analysis, we study the solution to the equation that transforms scanning data into a map. As originally suggested in “messenger” methods for solving linear systems, we split the noise covariance into uniform and nonuniform parts and adjust their relative weights during the iterative solution. With simulations, we study mock instrumental data with different noise properties, and find that this “cooling” or perturbative approach is particularly effective when there is significant low-frequency noise in the timestream. In such cases, a conjugate gradient algorithm applied to this modified system converges faster and to a higher fidelity solution than the standard conjugate gradient approach. We give an analytic estimate for the parameter that controls how gradually the linear system should change during the course of the solution.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac31ab</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Algorithms ; Astronomy data analysis ; Astrophysics ; Background noise ; Big Bang theory ; Cartography ; Computational methods ; Conjugate gradient method ; Cooling ; Cosmic microwave background ; Cosmic microwave background radiation ; Data analysis ; Iterative solution ; LF noise ; Linear systems ; Noise</subject><ispartof>The Astrophysical journal, 2021-12, Vol.922 (2), p.97</ispartof><rights>2021. The Author(s). Published by the American Astronomical Society.</rights><rights>Copyright IOP Publishing Dec 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-9ee9b3a002113fc775882f6bc851553f3d0b365c964362c780a74b9cb35272a73</citedby><cites>FETCH-LOGICAL-c379t-9ee9b3a002113fc775882f6bc851553f3d0b365c964362c780a74b9cb35272a73</cites><orcidid>0000-0001-7109-0099 ; 0000-0002-2981-4951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac31ab/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Chiang, Bai-Chiang</creatorcontrib><creatorcontrib>Huffenberger, Kevin M.</creatorcontrib><title>Cooling Improves Cosmic Microwave Background Map-making when Low-frequency Noise is Large</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>In the context of cosmic microwave background data analysis, we study the solution to the equation that transforms scanning data into a map. As originally suggested in “messenger” methods for solving linear systems, we split the noise covariance into uniform and nonuniform parts and adjust their relative weights during the iterative solution. With simulations, we study mock instrumental data with different noise properties, and find that this “cooling” or perturbative approach is particularly effective when there is significant low-frequency noise in the timestream. In such cases, a conjugate gradient algorithm applied to this modified system converges faster and to a higher fidelity solution than the standard conjugate gradient approach. We give an analytic estimate for the parameter that controls how gradually the linear system should change during the course of the solution.</description><subject>Algorithms</subject><subject>Astronomy data analysis</subject><subject>Astrophysics</subject><subject>Background noise</subject><subject>Big Bang theory</subject><subject>Cartography</subject><subject>Computational methods</subject><subject>Conjugate gradient method</subject><subject>Cooling</subject><subject>Cosmic microwave background</subject><subject>Cosmic microwave background radiation</subject><subject>Data analysis</subject><subject>Iterative solution</subject><subject>LF noise</subject><subject>Linear systems</subject><subject>Noise</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kL1PwzAQxS0EEqWwM1qCkVDHF9vxCBUflVJYQILJclynpG3iYPdD_e9JFAQLYjrd6Xfv3j2EzmNyDWkiRjGDNEqAiZE2EOv8AA1-RodoQAhJIg7i7RidhLDoWirlAL2PnVuV9RxPqsa7rQ147EJVGjwtjXc7vbX4Vpvl3LtNPcNT3USVXnb87sPWOHO7qPD2c2Nrs8dPrgwWlwFn2s_tKToq9CrYs-86RK_3dy_jxyh7fpiMb7LIgJDrSForc9CE0DiGwgjB0pQWPDcpixmDAmYkB86M5AlwakRKtEhyaXJgVFAtYIguet3Wf2skrNXCbXzdnlSUk6TV4Iy3FOmp9qsQvC1U48tK-72KieoCVF1aqktL9QG2K1f9SumaX81_8Ms_cN0slKRUUSWFamYFfAFlFX2s</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Chiang, Bai-Chiang</creator><creator>Huffenberger, Kevin M.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7109-0099</orcidid><orcidid>https://orcid.org/0000-0002-2981-4951</orcidid></search><sort><creationdate>20211201</creationdate><title>Cooling Improves Cosmic Microwave Background Map-making when Low-frequency Noise is Large</title><author>Chiang, Bai-Chiang ; Huffenberger, Kevin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-9ee9b3a002113fc775882f6bc851553f3d0b365c964362c780a74b9cb35272a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Astronomy data analysis</topic><topic>Astrophysics</topic><topic>Background noise</topic><topic>Big Bang theory</topic><topic>Cartography</topic><topic>Computational methods</topic><topic>Conjugate gradient method</topic><topic>Cooling</topic><topic>Cosmic microwave background</topic><topic>Cosmic microwave background radiation</topic><topic>Data analysis</topic><topic>Iterative solution</topic><topic>LF noise</topic><topic>Linear systems</topic><topic>Noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiang, Bai-Chiang</creatorcontrib><creatorcontrib>Huffenberger, Kevin M.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiang, Bai-Chiang</au><au>Huffenberger, Kevin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooling Improves Cosmic Microwave Background Map-making when Low-frequency Noise is Large</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>922</volume><issue>2</issue><spage>97</spage><pages>97-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>In the context of cosmic microwave background data analysis, we study the solution to the equation that transforms scanning data into a map. As originally suggested in “messenger” methods for solving linear systems, we split the noise covariance into uniform and nonuniform parts and adjust their relative weights during the iterative solution. With simulations, we study mock instrumental data with different noise properties, and find that this “cooling” or perturbative approach is particularly effective when there is significant low-frequency noise in the timestream. In such cases, a conjugate gradient algorithm applied to this modified system converges faster and to a higher fidelity solution than the standard conjugate gradient approach. We give an analytic estimate for the parameter that controls how gradually the linear system should change during the course of the solution.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac31ab</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7109-0099</orcidid><orcidid>https://orcid.org/0000-0002-2981-4951</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2021-12, Vol.922 (2), p.97
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2604553656
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Algorithms
Astronomy data analysis
Astrophysics
Background noise
Big Bang theory
Cartography
Computational methods
Conjugate gradient method
Cooling
Cosmic microwave background
Cosmic microwave background radiation
Data analysis
Iterative solution
LF noise
Linear systems
Noise
title Cooling Improves Cosmic Microwave Background Map-making when Low-frequency Noise is Large
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooling%20Improves%20Cosmic%20Microwave%20Background%20Map-making%20when%20Low-frequency%20Noise%20is%20Large&rft.jtitle=The%20Astrophysical%20journal&rft.au=Chiang,%20Bai-Chiang&rft.date=2021-12-01&rft.volume=922&rft.issue=2&rft.spage=97&rft.pages=97-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac31ab&rft_dat=%3Cproquest_iop_j%3E2604553656%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604553656&rft_id=info:pmid/&rfr_iscdi=true