Cooling Improves Cosmic Microwave Background Map-making when Low-frequency Noise is Large
In the context of cosmic microwave background data analysis, we study the solution to the equation that transforms scanning data into a map. As originally suggested in “messenger” methods for solving linear systems, we split the noise covariance into uniform and nonuniform parts and adjust their rel...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2021-12, Vol.922 (2), p.97 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 97 |
container_title | The Astrophysical journal |
container_volume | 922 |
creator | Chiang, Bai-Chiang Huffenberger, Kevin M. |
description | In the context of cosmic microwave background data analysis, we study the solution to the equation that transforms scanning data into a map. As originally suggested in “messenger” methods for solving linear systems, we split the noise covariance into uniform and nonuniform parts and adjust their relative weights during the iterative solution. With simulations, we study mock instrumental data with different noise properties, and find that this “cooling” or perturbative approach is particularly effective when there is significant low-frequency noise in the timestream. In such cases, a conjugate gradient algorithm applied to this modified system converges faster and to a higher fidelity solution than the standard conjugate gradient approach. We give an analytic estimate for the parameter that controls how gradually the linear system should change during the course of the solution. |
doi_str_mv | 10.3847/1538-4357/ac31ab |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2604553656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604553656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-9ee9b3a002113fc775882f6bc851553f3d0b365c964362c780a74b9cb35272a73</originalsourceid><addsrcrecordid>eNp9kL1PwzAQxS0EEqWwM1qCkVDHF9vxCBUflVJYQILJclynpG3iYPdD_e9JFAQLYjrd6Xfv3j2EzmNyDWkiRjGDNEqAiZE2EOv8AA1-RodoQAhJIg7i7RidhLDoWirlAL2PnVuV9RxPqsa7rQ147EJVGjwtjXc7vbX4Vpvl3LtNPcNT3USVXnb87sPWOHO7qPD2c2Nrs8dPrgwWlwFn2s_tKToq9CrYs-86RK_3dy_jxyh7fpiMb7LIgJDrSForc9CE0DiGwgjB0pQWPDcpixmDAmYkB86M5AlwakRKtEhyaXJgVFAtYIguet3Wf2skrNXCbXzdnlSUk6TV4Iy3FOmp9qsQvC1U48tK-72KieoCVF1aqktL9QG2K1f9SumaX81_8Ms_cN0slKRUUSWFamYFfAFlFX2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604553656</pqid></control><display><type>article</type><title>Cooling Improves Cosmic Microwave Background Map-making when Low-frequency Noise is Large</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Chiang, Bai-Chiang ; Huffenberger, Kevin M.</creator><creatorcontrib>Chiang, Bai-Chiang ; Huffenberger, Kevin M.</creatorcontrib><description>In the context of cosmic microwave background data analysis, we study the solution to the equation that transforms scanning data into a map. As originally suggested in “messenger” methods for solving linear systems, we split the noise covariance into uniform and nonuniform parts and adjust their relative weights during the iterative solution. With simulations, we study mock instrumental data with different noise properties, and find that this “cooling” or perturbative approach is particularly effective when there is significant low-frequency noise in the timestream. In such cases, a conjugate gradient algorithm applied to this modified system converges faster and to a higher fidelity solution than the standard conjugate gradient approach. We give an analytic estimate for the parameter that controls how gradually the linear system should change during the course of the solution.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac31ab</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Algorithms ; Astronomy data analysis ; Astrophysics ; Background noise ; Big Bang theory ; Cartography ; Computational methods ; Conjugate gradient method ; Cooling ; Cosmic microwave background ; Cosmic microwave background radiation ; Data analysis ; Iterative solution ; LF noise ; Linear systems ; Noise</subject><ispartof>The Astrophysical journal, 2021-12, Vol.922 (2), p.97</ispartof><rights>2021. The Author(s). Published by the American Astronomical Society.</rights><rights>Copyright IOP Publishing Dec 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-9ee9b3a002113fc775882f6bc851553f3d0b365c964362c780a74b9cb35272a73</citedby><cites>FETCH-LOGICAL-c379t-9ee9b3a002113fc775882f6bc851553f3d0b365c964362c780a74b9cb35272a73</cites><orcidid>0000-0001-7109-0099 ; 0000-0002-2981-4951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac31ab/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Chiang, Bai-Chiang</creatorcontrib><creatorcontrib>Huffenberger, Kevin M.</creatorcontrib><title>Cooling Improves Cosmic Microwave Background Map-making when Low-frequency Noise is Large</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>In the context of cosmic microwave background data analysis, we study the solution to the equation that transforms scanning data into a map. As originally suggested in “messenger” methods for solving linear systems, we split the noise covariance into uniform and nonuniform parts and adjust their relative weights during the iterative solution. With simulations, we study mock instrumental data with different noise properties, and find that this “cooling” or perturbative approach is particularly effective when there is significant low-frequency noise in the timestream. In such cases, a conjugate gradient algorithm applied to this modified system converges faster and to a higher fidelity solution than the standard conjugate gradient approach. We give an analytic estimate for the parameter that controls how gradually the linear system should change during the course of the solution.</description><subject>Algorithms</subject><subject>Astronomy data analysis</subject><subject>Astrophysics</subject><subject>Background noise</subject><subject>Big Bang theory</subject><subject>Cartography</subject><subject>Computational methods</subject><subject>Conjugate gradient method</subject><subject>Cooling</subject><subject>Cosmic microwave background</subject><subject>Cosmic microwave background radiation</subject><subject>Data analysis</subject><subject>Iterative solution</subject><subject>LF noise</subject><subject>Linear systems</subject><subject>Noise</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp9kL1PwzAQxS0EEqWwM1qCkVDHF9vxCBUflVJYQILJclynpG3iYPdD_e9JFAQLYjrd6Xfv3j2EzmNyDWkiRjGDNEqAiZE2EOv8AA1-RodoQAhJIg7i7RidhLDoWirlAL2PnVuV9RxPqsa7rQ147EJVGjwtjXc7vbX4Vpvl3LtNPcNT3USVXnb87sPWOHO7qPD2c2Nrs8dPrgwWlwFn2s_tKToq9CrYs-86RK_3dy_jxyh7fpiMb7LIgJDrSForc9CE0DiGwgjB0pQWPDcpixmDAmYkB86M5AlwakRKtEhyaXJgVFAtYIguet3Wf2skrNXCbXzdnlSUk6TV4Iy3FOmp9qsQvC1U48tK-72KieoCVF1aqktL9QG2K1f9SumaX81_8Ms_cN0slKRUUSWFamYFfAFlFX2s</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Chiang, Bai-Chiang</creator><creator>Huffenberger, Kevin M.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7109-0099</orcidid><orcidid>https://orcid.org/0000-0002-2981-4951</orcidid></search><sort><creationdate>20211201</creationdate><title>Cooling Improves Cosmic Microwave Background Map-making when Low-frequency Noise is Large</title><author>Chiang, Bai-Chiang ; Huffenberger, Kevin M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-9ee9b3a002113fc775882f6bc851553f3d0b365c964362c780a74b9cb35272a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Astronomy data analysis</topic><topic>Astrophysics</topic><topic>Background noise</topic><topic>Big Bang theory</topic><topic>Cartography</topic><topic>Computational methods</topic><topic>Conjugate gradient method</topic><topic>Cooling</topic><topic>Cosmic microwave background</topic><topic>Cosmic microwave background radiation</topic><topic>Data analysis</topic><topic>Iterative solution</topic><topic>LF noise</topic><topic>Linear systems</topic><topic>Noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiang, Bai-Chiang</creatorcontrib><creatorcontrib>Huffenberger, Kevin M.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiang, Bai-Chiang</au><au>Huffenberger, Kevin M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cooling Improves Cosmic Microwave Background Map-making when Low-frequency Noise is Large</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>922</volume><issue>2</issue><spage>97</spage><pages>97-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>In the context of cosmic microwave background data analysis, we study the solution to the equation that transforms scanning data into a map. As originally suggested in “messenger” methods for solving linear systems, we split the noise covariance into uniform and nonuniform parts and adjust their relative weights during the iterative solution. With simulations, we study mock instrumental data with different noise properties, and find that this “cooling” or perturbative approach is particularly effective when there is significant low-frequency noise in the timestream. In such cases, a conjugate gradient algorithm applied to this modified system converges faster and to a higher fidelity solution than the standard conjugate gradient approach. We give an analytic estimate for the parameter that controls how gradually the linear system should change during the course of the solution.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac31ab</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7109-0099</orcidid><orcidid>https://orcid.org/0000-0002-2981-4951</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2021-12, Vol.922 (2), p.97 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_proquest_journals_2604553656 |
source | IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Algorithms Astronomy data analysis Astrophysics Background noise Big Bang theory Cartography Computational methods Conjugate gradient method Cooling Cosmic microwave background Cosmic microwave background radiation Data analysis Iterative solution LF noise Linear systems Noise |
title | Cooling Improves Cosmic Microwave Background Map-making when Low-frequency Noise is Large |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cooling%20Improves%20Cosmic%20Microwave%20Background%20Map-making%20when%20Low-frequency%20Noise%20is%20Large&rft.jtitle=The%20Astrophysical%20journal&rft.au=Chiang,%20Bai-Chiang&rft.date=2021-12-01&rft.volume=922&rft.issue=2&rft.spage=97&rft.pages=97-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac31ab&rft_dat=%3Cproquest_iop_j%3E2604553656%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604553656&rft_id=info:pmid/&rfr_iscdi=true |