Equation of State for Solid Benzene Valid for Temperatures up to 470 K and Pressures up to 1800 MPa

The thermodynamic property data for solid phase I of benzene are reviewed and utilized to develop a new fundamental equation of state (EOS) based on Helmholtz energy, following the methodology used for solid phase I of CO2 by Trusler [J. Phys. Chem. Ref. Data 40, 043105 (2011)]. With temperature and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical and chemical reference data 2021-12, Vol.50 (4), p.1
Hauptverfasser: Trusler, J. P. Martin, Thol, Monika, Al Ghafri, Saif Z. S., Rowland, Darren, May, Eric F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The thermodynamic property data for solid phase I of benzene are reviewed and utilized to develop a new fundamental equation of state (EOS) based on Helmholtz energy, following the methodology used for solid phase I of CO2 by Trusler [J. Phys. Chem. Ref. Data 40, 043105 (2011)]. With temperature and molar volume as independent variables, the EOS is able to calculate all thermodynamic properties of solid benzene at temperatures up to 470 K and at pressures up to 1800 MPa. The model is constructed using the quasi-harmonic approximation, incorporating a Debye oscillator distribution for the vibrons, four discrete modes for the librons, and a further 30 distinct modes for the internal vibrations of the benzene molecule. An anharmonic term is used to account for inevitable deviations from the quasi-harmonic model, which are particularly important near the triple point. The new EOS is able to describe the available experimental data to a level comparable with the likely experimental uncertainties. The estimated relative standard uncertainties of the EOS are 0.2% and 1.5% for molar volume on the sublimation curve and in the compressed solid region, respectively; 8%–1% for isobaric heat capacity on the sublimation curve between 4 K and 278 K; 4% for thermal expansivity; 1% for isentropic bulk modulus; 1% for enthalpy of sublimation and melting; and 3% and 4% for the computed sublimation and melting pressures, respectively. The EOS behaves in a physically reasonable manner at temperatures approaching absolute zero and also at very high pressures.
ISSN:0047-2689
1529-7845
DOI:10.1063/5.0065786