Microstructure and Impact Toughness of High-Strength Low-Alloy Steel after Tempforming

The effects of temperature and degree of tempforming deformation on the microstructure and impact toughness of high-strength low-alloy 25KhGMT steel have been considered. Tempforming forms a lamellar microstructure composed of grains and subgrains that are strongly elongated along the rolling direct...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of metals and metallography 2021-10, Vol.122 (10), p.1014-1022
Hauptverfasser: Dolzhenko, A. S., Dolzhenko, P. D., Belyakov, A. N., Kaibyshev, R. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1022
container_issue 10
container_start_page 1014
container_title Physics of metals and metallography
container_volume 122
creator Dolzhenko, A. S.
Dolzhenko, P. D.
Belyakov, A. N.
Kaibyshev, R. O.
description The effects of temperature and degree of tempforming deformation on the microstructure and impact toughness of high-strength low-alloy 25KhGMT steel have been considered. Tempforming forms a lamellar microstructure composed of grains and subgrains that are strongly elongated along the rolling direction. The average size of the grain section is 570–790 nm. Deformation texture includes 〈001〉 || ND and 〈111〉 || ND fibers. Tempforming increases the fracture work of this steel at lower test temperatures ( KV –40°С ≥ 360 J) due to the delamination of the specimen perpendicular to the impact direction, which prevents crack propagation towards the direction of the impact.
doi_str_mv 10.1134/S0031918X21100021
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2604482994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684269165</galeid><sourcerecordid>A684269165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-2973f1e4f3b51724efbce3ce780de34bebe26789c8d16a7064b5cb48cdf74bc43</originalsourceid><addsrcrecordid>eNqNkM1q3DAURkVoIdM0D5CdoMviVH-W7eUwtElgQhczLd0ZWb7yKNjSVJIJefvKuLSLUghaSOiec6X7IXRDyS2lXHw6EMJpQ-sfjFJCCKMXaEPLsiwkbcgbtFnKxVK_RO9ifCJECCH5Bn1_tDr4mMKs0xwAK9fjh-msdMJHPw8nBzFib_C9HU7FIQVwQzrhvX8utuPoX_AhAYxYmQQBH2E6Gx8m64b36K1RY4Tr3_sV-vbl83F3X-y_3j3stvtCCylSwZqKGwrC8K6kFRNgOg1cQ1WTHrjooAMmq7rRdU-lqogUXak7UeveVKLTgl-hD2vfc_A_Z4ipffJzcPnJlsk8Y82aZqFuV2pQI7TWGZ-C0nn1MFntHRib77eyFkw2VJZZoKuwZBMDmPYc7KTCS0tJu-Td_pN3dj6uzjN03kRtwWn442WmYlyWDcsnutD16-mdTSpZ73Z-dimrbFVjxt0A4e_M___dL2plosQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604482994</pqid></control><display><type>article</type><title>Microstructure and Impact Toughness of High-Strength Low-Alloy Steel after Tempforming</title><source>Springer Nature - Complete Springer Journals</source><creator>Dolzhenko, A. S. ; Dolzhenko, P. D. ; Belyakov, A. N. ; Kaibyshev, R. O.</creator><creatorcontrib>Dolzhenko, A. S. ; Dolzhenko, P. D. ; Belyakov, A. N. ; Kaibyshev, R. O.</creatorcontrib><description>The effects of temperature and degree of tempforming deformation on the microstructure and impact toughness of high-strength low-alloy 25KhGMT steel have been considered. Tempforming forms a lamellar microstructure composed of grains and subgrains that are strongly elongated along the rolling direction. The average size of the grain section is 570–790 nm. Deformation texture includes 〈001〉 || ND and 〈111〉 || ND fibers. Tempforming increases the fracture work of this steel at lower test temperatures ( KV –40°С ≥ 360 J) due to the delamination of the specimen perpendicular to the impact direction, which prevents crack propagation towards the direction of the impact.</description><identifier>ISSN: 0031-918X</identifier><identifier>EISSN: 1555-6190</identifier><identifier>DOI: 10.1134/S0031918X21100021</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Alloys ; Boron steel ; Chemistry and Materials Science ; Crack propagation ; Deformation effects ; Heat treating ; High strength low alloy steels ; Impact strength ; Laminated materials ; Materials Science ; Metallic Materials ; Metallurgy &amp; Metallurgical Engineering ; Microstructure ; Rolling direction ; Science &amp; Technology ; Specialty metals industry ; Specialty steels ; Steel alloys ; Strength and Plasticity ; Technology ; Temperature effects</subject><ispartof>Physics of metals and metallography, 2021-10, Vol.122 (10), p.1014-1022</ispartof><rights>Pleiades Publishing, Ltd. 2021. ISSN 0031-918X, Physics of Metals and Metallography, 2021, Vol. 122, No. 10, pp. 1014–1022. © Pleiades Publishing, Ltd., 2021. Russian Text © The Author(s), 2021, published in Fizika Metallov i Metallovedenie, 2021, Vol. 122, No. 10, pp. 1091–1100.</rights><rights>COPYRIGHT 2021 Springer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000723659200011</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c464t-2973f1e4f3b51724efbce3ce780de34bebe26789c8d16a7064b5cb48cdf74bc43</citedby><cites>FETCH-LOGICAL-c464t-2973f1e4f3b51724efbce3ce780de34bebe26789c8d16a7064b5cb48cdf74bc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0031918X21100021$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0031918X21100021$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids></links><search><creatorcontrib>Dolzhenko, A. S.</creatorcontrib><creatorcontrib>Dolzhenko, P. D.</creatorcontrib><creatorcontrib>Belyakov, A. N.</creatorcontrib><creatorcontrib>Kaibyshev, R. O.</creatorcontrib><title>Microstructure and Impact Toughness of High-Strength Low-Alloy Steel after Tempforming</title><title>Physics of metals and metallography</title><addtitle>Phys. Metals Metallogr</addtitle><addtitle>PHYS MET METALLOGR</addtitle><description>The effects of temperature and degree of tempforming deformation on the microstructure and impact toughness of high-strength low-alloy 25KhGMT steel have been considered. Tempforming forms a lamellar microstructure composed of grains and subgrains that are strongly elongated along the rolling direction. The average size of the grain section is 570–790 nm. Deformation texture includes 〈001〉 || ND and 〈111〉 || ND fibers. Tempforming increases the fracture work of this steel at lower test temperatures ( KV –40°С ≥ 360 J) due to the delamination of the specimen perpendicular to the impact direction, which prevents crack propagation towards the direction of the impact.</description><subject>Alloys</subject><subject>Boron steel</subject><subject>Chemistry and Materials Science</subject><subject>Crack propagation</subject><subject>Deformation effects</subject><subject>Heat treating</subject><subject>High strength low alloy steels</subject><subject>Impact strength</subject><subject>Laminated materials</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metallurgy &amp; Metallurgical Engineering</subject><subject>Microstructure</subject><subject>Rolling direction</subject><subject>Science &amp; Technology</subject><subject>Specialty metals industry</subject><subject>Specialty steels</subject><subject>Steel alloys</subject><subject>Strength and Plasticity</subject><subject>Technology</subject><subject>Temperature effects</subject><issn>0031-918X</issn><issn>1555-6190</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqNkM1q3DAURkVoIdM0D5CdoMviVH-W7eUwtElgQhczLd0ZWb7yKNjSVJIJefvKuLSLUghaSOiec6X7IXRDyS2lXHw6EMJpQ-sfjFJCCKMXaEPLsiwkbcgbtFnKxVK_RO9ifCJECCH5Bn1_tDr4mMKs0xwAK9fjh-msdMJHPw8nBzFib_C9HU7FIQVwQzrhvX8utuPoX_AhAYxYmQQBH2E6Gx8m64b36K1RY4Tr3_sV-vbl83F3X-y_3j3stvtCCylSwZqKGwrC8K6kFRNgOg1cQ1WTHrjooAMmq7rRdU-lqogUXak7UeveVKLTgl-hD2vfc_A_Z4ipffJzcPnJlsk8Y82aZqFuV2pQI7TWGZ-C0nn1MFntHRib77eyFkw2VJZZoKuwZBMDmPYc7KTCS0tJu-Td_pN3dj6uzjN03kRtwWn442WmYlyWDcsnutD16-mdTSpZ73Z-dimrbFVjxt0A4e_M___dL2plosQ</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Dolzhenko, A. S.</creator><creator>Dolzhenko, P. D.</creator><creator>Belyakov, A. N.</creator><creator>Kaibyshev, R. O.</creator><general>Pleiades Publishing</general><general>Springer Nature</general><general>Springer</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20211001</creationdate><title>Microstructure and Impact Toughness of High-Strength Low-Alloy Steel after Tempforming</title><author>Dolzhenko, A. S. ; Dolzhenko, P. D. ; Belyakov, A. N. ; Kaibyshev, R. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-2973f1e4f3b51724efbce3ce780de34bebe26789c8d16a7064b5cb48cdf74bc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloys</topic><topic>Boron steel</topic><topic>Chemistry and Materials Science</topic><topic>Crack propagation</topic><topic>Deformation effects</topic><topic>Heat treating</topic><topic>High strength low alloy steels</topic><topic>Impact strength</topic><topic>Laminated materials</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metallurgy &amp; Metallurgical Engineering</topic><topic>Microstructure</topic><topic>Rolling direction</topic><topic>Science &amp; Technology</topic><topic>Specialty metals industry</topic><topic>Specialty steels</topic><topic>Steel alloys</topic><topic>Strength and Plasticity</topic><topic>Technology</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dolzhenko, A. S.</creatorcontrib><creatorcontrib>Dolzhenko, P. D.</creatorcontrib><creatorcontrib>Belyakov, A. N.</creatorcontrib><creatorcontrib>Kaibyshev, R. O.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Physics of metals and metallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dolzhenko, A. S.</au><au>Dolzhenko, P. D.</au><au>Belyakov, A. N.</au><au>Kaibyshev, R. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure and Impact Toughness of High-Strength Low-Alloy Steel after Tempforming</atitle><jtitle>Physics of metals and metallography</jtitle><stitle>Phys. Metals Metallogr</stitle><stitle>PHYS MET METALLOGR</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>122</volume><issue>10</issue><spage>1014</spage><epage>1022</epage><pages>1014-1022</pages><issn>0031-918X</issn><eissn>1555-6190</eissn><abstract>The effects of temperature and degree of tempforming deformation on the microstructure and impact toughness of high-strength low-alloy 25KhGMT steel have been considered. Tempforming forms a lamellar microstructure composed of grains and subgrains that are strongly elongated along the rolling direction. The average size of the grain section is 570–790 nm. Deformation texture includes 〈001〉 || ND and 〈111〉 || ND fibers. Tempforming increases the fracture work of this steel at lower test temperatures ( KV –40°С ≥ 360 J) due to the delamination of the specimen perpendicular to the impact direction, which prevents crack propagation towards the direction of the impact.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0031918X21100021</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-918X
ispartof Physics of metals and metallography, 2021-10, Vol.122 (10), p.1014-1022
issn 0031-918X
1555-6190
language eng
recordid cdi_proquest_journals_2604482994
source Springer Nature - Complete Springer Journals
subjects Alloys
Boron steel
Chemistry and Materials Science
Crack propagation
Deformation effects
Heat treating
High strength low alloy steels
Impact strength
Laminated materials
Materials Science
Metallic Materials
Metallurgy & Metallurgical Engineering
Microstructure
Rolling direction
Science & Technology
Specialty metals industry
Specialty steels
Steel alloys
Strength and Plasticity
Technology
Temperature effects
title Microstructure and Impact Toughness of High-Strength Low-Alloy Steel after Tempforming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure%20and%20Impact%20Toughness%20of%20High-Strength%20Low-Alloy%20Steel%20after%20Tempforming&rft.jtitle=Physics%20of%20metals%20and%20metallography&rft.au=Dolzhenko,%20A.%20S.&rft.date=2021-10-01&rft.volume=122&rft.issue=10&rft.spage=1014&rft.epage=1022&rft.pages=1014-1022&rft.issn=0031-918X&rft.eissn=1555-6190&rft_id=info:doi/10.1134/S0031918X21100021&rft_dat=%3Cgale_proqu%3EA684269165%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604482994&rft_id=info:pmid/&rft_galeid=A684269165&rfr_iscdi=true