Physical and Chemical Vertical Structure of Magnetostatic Accretion Disks of Young Stars

The vertical structure of accretion disks of young stars with fossil large-scale magnetic field is studied. The equations of magnetostatic equilibrium of the disk are solved taking into account the stellar gravity, gas and magnetic pressure, turbulent heating, and heating by stellar radiation. The m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Lebedev Physics Institute 2021-10, Vol.48 (10), p.312-316
Hauptverfasser: Khaibrakhmanov, S. A., Dudorov, A. E., Vasyunin, A. I., Kiskin, M. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 316
container_issue 10
container_start_page 312
container_title Bulletin of the Lebedev Physics Institute
container_volume 48
creator Khaibrakhmanov, S. A.
Dudorov, A. E.
Vasyunin, A. I.
Kiskin, M. Yu
description The vertical structure of accretion disks of young stars with fossil large-scale magnetic field is studied. The equations of magnetostatic equilibrium of the disk are solved taking into account the stellar gravity, gas and magnetic pressure, turbulent heating, and heating by stellar radiation. The modelled physical structure of the disk is used to simulate its chemical structure, in particular, to study the spatial distribution of CN molecules. The disk of the typical T Tauri-type star is considered. Calculations show that the temperature within the disk in the region r < 50 au decreases with height and density profiles are steeper than in the isothermal case. Outside the “dead” zone, vertical profiles of the azimuthal component of the magnetic field are nonmonotonic, and the magnetic field strength maximum is reached within the disk. The magnetic pressure gradient can cause an increase in the disk thickness in comparison with the hydrostatic one. The CN molecule concentration is maximum near the photosphere and in the disk atmosphere where the magnetic field strength at the chosen parameters is ~0.01 G. Measurements of Zeeman splitting of CN lines in the submm range can be used to determine the magnetic field strength in these regions of accretion disks.
doi_str_mv 10.3103/S1068335621100067
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2604482868</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604482868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-1002882b0e9b41402c3b5a985eeb012c56e1bb7ab77c243659830f05c877e613</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwueVyfJJps9lvoJFYUWqaclibPt1na3JtlD_73ZVvAgnuYN72OGR8glhWtOgd9MKUjFuZCMUgCQ-REZ0IJnqeJqfhxxpNOePyVn3q8AhFCFGJD563Lna6vXiW4-kvESN_vlDV3Yg2lwnQ2dw6Stkme9aDC0PuhIJiNrHYa6bZLb2n_6XvDeds0ierTz5-Sk0muPFz9zSGb3d7PxYzp5eXgajyap5VSGND7LlGIGsDAZzYBZboQulEA0QJkVEqkxuTZ5blnGpSgUhwqEVXmOkvIhuTrEbl371aEP5artXBMvlkxClimmYi9DQg8q61rvHVbl1tUb7XYlhbLvr_zTX_Swg8dHbbNA95v8v-kbu0Bwpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604482868</pqid></control><display><type>article</type><title>Physical and Chemical Vertical Structure of Magnetostatic Accretion Disks of Young Stars</title><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Khaibrakhmanov, S. A. ; Dudorov, A. E. ; Vasyunin, A. I. ; Kiskin, M. Yu</creator><creatorcontrib>Khaibrakhmanov, S. A. ; Dudorov, A. E. ; Vasyunin, A. I. ; Kiskin, M. Yu</creatorcontrib><description>The vertical structure of accretion disks of young stars with fossil large-scale magnetic field is studied. The equations of magnetostatic equilibrium of the disk are solved taking into account the stellar gravity, gas and magnetic pressure, turbulent heating, and heating by stellar radiation. The modelled physical structure of the disk is used to simulate its chemical structure, in particular, to study the spatial distribution of CN molecules. The disk of the typical T Tauri-type star is considered. Calculations show that the temperature within the disk in the region r &lt; 50 au decreases with height and density profiles are steeper than in the isothermal case. Outside the “dead” zone, vertical profiles of the azimuthal component of the magnetic field are nonmonotonic, and the magnetic field strength maximum is reached within the disk. The magnetic pressure gradient can cause an increase in the disk thickness in comparison with the hydrostatic one. The CN molecule concentration is maximum near the photosphere and in the disk atmosphere where the magnetic field strength at the chosen parameters is ~0.01 G. Measurements of Zeeman splitting of CN lines in the submm range can be used to determine the magnetic field strength in these regions of accretion disks.</description><identifier>ISSN: 1068-3356</identifier><identifier>EISSN: 1934-838X</identifier><identifier>DOI: 10.3103/S1068335621100067</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Accretion disks ; Field strength ; Heating ; Magnetic fields ; Photosphere ; Physics ; Physics and Astronomy ; Spatial distribution ; Stellar magnetic fields ; Stellar radiation ; Zeeman effect</subject><ispartof>Bulletin of the Lebedev Physics Institute, 2021-10, Vol.48 (10), p.312-316</ispartof><rights>Allerton Press, Inc. 2021. ISSN 1068-3356, Bulletin of the Lebedev Physics Institute, 2021, Vol. 48, No. 10, pp. 312–316. © Allerton Press, Inc., 2021. Russian Text © The Author(s), 2021, published in Kratkie Soobshcheniya po Fizike, 2021, Vol. 48, No. 10, pp. 29–36.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-1002882b0e9b41402c3b5a985eeb012c56e1bb7ab77c243659830f05c877e613</citedby><cites>FETCH-LOGICAL-c316t-1002882b0e9b41402c3b5a985eeb012c56e1bb7ab77c243659830f05c877e613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1068335621100067$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1068335621100067$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Khaibrakhmanov, S. A.</creatorcontrib><creatorcontrib>Dudorov, A. E.</creatorcontrib><creatorcontrib>Vasyunin, A. I.</creatorcontrib><creatorcontrib>Kiskin, M. Yu</creatorcontrib><title>Physical and Chemical Vertical Structure of Magnetostatic Accretion Disks of Young Stars</title><title>Bulletin of the Lebedev Physics Institute</title><addtitle>Bull. Lebedev Phys. Inst</addtitle><description>The vertical structure of accretion disks of young stars with fossil large-scale magnetic field is studied. The equations of magnetostatic equilibrium of the disk are solved taking into account the stellar gravity, gas and magnetic pressure, turbulent heating, and heating by stellar radiation. The modelled physical structure of the disk is used to simulate its chemical structure, in particular, to study the spatial distribution of CN molecules. The disk of the typical T Tauri-type star is considered. Calculations show that the temperature within the disk in the region r &lt; 50 au decreases with height and density profiles are steeper than in the isothermal case. Outside the “dead” zone, vertical profiles of the azimuthal component of the magnetic field are nonmonotonic, and the magnetic field strength maximum is reached within the disk. The magnetic pressure gradient can cause an increase in the disk thickness in comparison with the hydrostatic one. The CN molecule concentration is maximum near the photosphere and in the disk atmosphere where the magnetic field strength at the chosen parameters is ~0.01 G. Measurements of Zeeman splitting of CN lines in the submm range can be used to determine the magnetic field strength in these regions of accretion disks.</description><subject>Accretion disks</subject><subject>Field strength</subject><subject>Heating</subject><subject>Magnetic fields</subject><subject>Photosphere</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Spatial distribution</subject><subject>Stellar magnetic fields</subject><subject>Stellar radiation</subject><subject>Zeeman effect</subject><issn>1068-3356</issn><issn>1934-838X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf4AbwueVyfJJps9lvoJFYUWqaclibPt1na3JtlD_73ZVvAgnuYN72OGR8glhWtOgd9MKUjFuZCMUgCQ-REZ0IJnqeJqfhxxpNOePyVn3q8AhFCFGJD563Lna6vXiW4-kvESN_vlDV3Yg2lwnQ2dw6Stkme9aDC0PuhIJiNrHYa6bZLb2n_6XvDeds0ierTz5-Sk0muPFz9zSGb3d7PxYzp5eXgajyap5VSGND7LlGIGsDAZzYBZboQulEA0QJkVEqkxuTZ5blnGpSgUhwqEVXmOkvIhuTrEbl371aEP5artXBMvlkxClimmYi9DQg8q61rvHVbl1tUb7XYlhbLvr_zTX_Swg8dHbbNA95v8v-kbu0Bwpg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Khaibrakhmanov, S. A.</creator><creator>Dudorov, A. E.</creator><creator>Vasyunin, A. I.</creator><creator>Kiskin, M. Yu</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>Physical and Chemical Vertical Structure of Magnetostatic Accretion Disks of Young Stars</title><author>Khaibrakhmanov, S. A. ; Dudorov, A. E. ; Vasyunin, A. I. ; Kiskin, M. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-1002882b0e9b41402c3b5a985eeb012c56e1bb7ab77c243659830f05c877e613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accretion disks</topic><topic>Field strength</topic><topic>Heating</topic><topic>Magnetic fields</topic><topic>Photosphere</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Spatial distribution</topic><topic>Stellar magnetic fields</topic><topic>Stellar radiation</topic><topic>Zeeman effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khaibrakhmanov, S. A.</creatorcontrib><creatorcontrib>Dudorov, A. E.</creatorcontrib><creatorcontrib>Vasyunin, A. I.</creatorcontrib><creatorcontrib>Kiskin, M. Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Lebedev Physics Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khaibrakhmanov, S. A.</au><au>Dudorov, A. E.</au><au>Vasyunin, A. I.</au><au>Kiskin, M. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical and Chemical Vertical Structure of Magnetostatic Accretion Disks of Young Stars</atitle><jtitle>Bulletin of the Lebedev Physics Institute</jtitle><stitle>Bull. Lebedev Phys. Inst</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>48</volume><issue>10</issue><spage>312</spage><epage>316</epage><pages>312-316</pages><issn>1068-3356</issn><eissn>1934-838X</eissn><abstract>The vertical structure of accretion disks of young stars with fossil large-scale magnetic field is studied. The equations of magnetostatic equilibrium of the disk are solved taking into account the stellar gravity, gas and magnetic pressure, turbulent heating, and heating by stellar radiation. The modelled physical structure of the disk is used to simulate its chemical structure, in particular, to study the spatial distribution of CN molecules. The disk of the typical T Tauri-type star is considered. Calculations show that the temperature within the disk in the region r &lt; 50 au decreases with height and density profiles are steeper than in the isothermal case. Outside the “dead” zone, vertical profiles of the azimuthal component of the magnetic field are nonmonotonic, and the magnetic field strength maximum is reached within the disk. The magnetic pressure gradient can cause an increase in the disk thickness in comparison with the hydrostatic one. The CN molecule concentration is maximum near the photosphere and in the disk atmosphere where the magnetic field strength at the chosen parameters is ~0.01 G. Measurements of Zeeman splitting of CN lines in the submm range can be used to determine the magnetic field strength in these regions of accretion disks.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1068335621100067</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-3356
ispartof Bulletin of the Lebedev Physics Institute, 2021-10, Vol.48 (10), p.312-316
issn 1068-3356
1934-838X
language eng
recordid cdi_proquest_journals_2604482868
source SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accretion disks
Field strength
Heating
Magnetic fields
Photosphere
Physics
Physics and Astronomy
Spatial distribution
Stellar magnetic fields
Stellar radiation
Zeeman effect
title Physical and Chemical Vertical Structure of Magnetostatic Accretion Disks of Young Stars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A24%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20and%20Chemical%20Vertical%20Structure%20of%20Magnetostatic%20Accretion%20Disks%20of%20Young%20Stars&rft.jtitle=Bulletin%20of%20the%20Lebedev%20Physics%20Institute&rft.au=Khaibrakhmanov,%20S.%20A.&rft.date=2021-10-01&rft.volume=48&rft.issue=10&rft.spage=312&rft.epage=316&rft.pages=312-316&rft.issn=1068-3356&rft.eissn=1934-838X&rft_id=info:doi/10.3103/S1068335621100067&rft_dat=%3Cproquest_cross%3E2604482868%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604482868&rft_id=info:pmid/&rfr_iscdi=true