Electrical Resistivity of Liquid Fe–Mn Alloys

The paper deals with the specific electrical resistivity of liquid Fe–Mn alloys with the manganese content of 3.9, 6.0, 8.2, 10.3 and 13.2 at.%. A rotary-field electromagnetic method is used to measure this parameter. The experiments are conducted under heating conditions in the range from 1720 to 2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian physics journal 2021-10, Vol.64 (6), p.1039-1046
Hauptverfasser: Chikova, O. A., Sinitsin, N. I., V’yukhin, V. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1046
container_issue 6
container_start_page 1039
container_title Russian physics journal
container_volume 64
creator Chikova, O. A.
Sinitsin, N. I.
V’yukhin, V. V.
description The paper deals with the specific electrical resistivity of liquid Fe–Mn alloys with the manganese content of 3.9, 6.0, 8.2, 10.3 and 13.2 at.%. A rotary-field electromagnetic method is used to measure this parameter. The experiments are conducted under heating conditions in the range from 1720 to 2070 K followed by the specimen cooling in pure helium. Most of alloys demonstrate a kink on the temperature curve of the specific electrical resistivity during heating up to 1900–2000 K. It is found that the specific electrical resistivity and the ratio between the conductivities of the liquid alloys and the inclusion grow with increasing manganese content in the alloy. Theoretical calculations are performed for the effective specific electrical resistivity of the liquid Fe–10 at.% Mn alloy in the temperature range 1720 to 2770 K. The certain temperature is determined, when the conductivity of the heterogeneous liquid alloy equals the conductivity of the iron solution in manganese with the uniform atom distribution. The obtained values of the certain temperature range between 2050– 2100 K, i.e., are higher than 1900–2000 K, at which the kink appears on the temperature curve of the electrical resistivity. Theoretical studies are presented for the percolation transition in heterogeneous liquid Fe–Mn alloys. The limit value is identified for the ratio between the electrical resistivity of liquid alloys and the inclusion, when a percolation transition is possible. The percolation threshold is determined as a volume fraction of inclusions, at which the effective specific electrical resistivity significantly reduces. The latter is calculated for the heterogeneous liquid alloy in the Maxwell approximation (interpreted by А. А. Snarskii).
doi_str_mv 10.1007/s11182-021-02426-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2604481666</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A739124884</galeid><sourcerecordid>A739124884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-6e7e048415d3c801e5dcfa1449e8ded4380b5a1c73483f8ccd2776125cbb05f73</originalsourceid><addsrcrecordid>eNqNkMFKAzEQhoMoWKsv4GnB87aZJJtkj6W0KlQE0XNIs0lJ2e62yVbYm-_gG_okRlfwJjIMMwz_NzP8CF0DngDGYhoBQJIcE0jJCM_7EzSCQtC8JESeph5zlkspxTm6iHGLccK4GKHporamC97oOnuy0cfOv_quz1qXrfzh6KtsaT_e3h-abFbXbR8v0ZnTdbRXP3WMXpaL5_ldvnq8vZ_PVrmhpehyboXFTDIoKmokBltUxmlgrLSyshWjEq8LDUZQJqmTxlRECA6kMOs1LpygY3Qz7N2H9nC0sVPb9hiadFIRjhmTwDlPqsmg2ujaKt-4tgvapKjszpu2sc6n-UzQEgiTkv0bAAmYcVImgAyACW2MwTq1D36nQ68Aqy_r1WC9Starb-tVnyA6QDGJm40Nv8__QX0Cl2iFiw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2604481666</pqid></control><display><type>article</type><title>Electrical Resistivity of Liquid Fe–Mn Alloys</title><source>SpringerLink Journals</source><creator>Chikova, O. A. ; Sinitsin, N. I. ; V’yukhin, V. V.</creator><creatorcontrib>Chikova, O. A. ; Sinitsin, N. I. ; V’yukhin, V. V.</creatorcontrib><description>The paper deals with the specific electrical resistivity of liquid Fe–Mn alloys with the manganese content of 3.9, 6.0, 8.2, 10.3 and 13.2 at.%. A rotary-field electromagnetic method is used to measure this parameter. The experiments are conducted under heating conditions in the range from 1720 to 2070 K followed by the specimen cooling in pure helium. Most of alloys demonstrate a kink on the temperature curve of the specific electrical resistivity during heating up to 1900–2000 K. It is found that the specific electrical resistivity and the ratio between the conductivities of the liquid alloys and the inclusion grow with increasing manganese content in the alloy. Theoretical calculations are performed for the effective specific electrical resistivity of the liquid Fe–10 at.% Mn alloy in the temperature range 1720 to 2770 K. The certain temperature is determined, when the conductivity of the heterogeneous liquid alloy equals the conductivity of the iron solution in manganese with the uniform atom distribution. The obtained values of the certain temperature range between 2050– 2100 K, i.e., are higher than 1900–2000 K, at which the kink appears on the temperature curve of the electrical resistivity. Theoretical studies are presented for the percolation transition in heterogeneous liquid Fe–Mn alloys. The limit value is identified for the ratio between the electrical resistivity of liquid alloys and the inclusion, when a percolation transition is possible. The percolation threshold is determined as a volume fraction of inclusions, at which the effective specific electrical resistivity significantly reduces. The latter is calculated for the heterogeneous liquid alloy in the Maxwell approximation (interpreted by А. А. Snarskii).</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-021-02426-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Condensed Matter Physics ; Degassing of metals ; Electric properties ; Electrical resistivity ; Electromagnetism ; Ferrous alloys ; Hadrons ; Heating ; Heavy Ions ; Inclusions ; Iron ; Lasers ; Liquid alloys ; Manganese ; Mathematical analysis ; Mathematical and Computational Physics ; Metals ; Nuclear Physics ; Optical Devices ; Optics ; Percolation ; Photonics ; Physics ; Physics and Astronomy ; Specialty metals industry ; Theoretical</subject><ispartof>Russian physics journal, 2021-10, Vol.64 (6), p.1039-1046</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-6e7e048415d3c801e5dcfa1449e8ded4380b5a1c73483f8ccd2776125cbb05f73</citedby><cites>FETCH-LOGICAL-c397t-6e7e048415d3c801e5dcfa1449e8ded4380b5a1c73483f8ccd2776125cbb05f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11182-021-02426-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11182-021-02426-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Chikova, O. A.</creatorcontrib><creatorcontrib>Sinitsin, N. I.</creatorcontrib><creatorcontrib>V’yukhin, V. V.</creatorcontrib><title>Electrical Resistivity of Liquid Fe–Mn Alloys</title><title>Russian physics journal</title><addtitle>Russ Phys J</addtitle><description>The paper deals with the specific electrical resistivity of liquid Fe–Mn alloys with the manganese content of 3.9, 6.0, 8.2, 10.3 and 13.2 at.%. A rotary-field electromagnetic method is used to measure this parameter. The experiments are conducted under heating conditions in the range from 1720 to 2070 K followed by the specimen cooling in pure helium. Most of alloys demonstrate a kink on the temperature curve of the specific electrical resistivity during heating up to 1900–2000 K. It is found that the specific electrical resistivity and the ratio between the conductivities of the liquid alloys and the inclusion grow with increasing manganese content in the alloy. Theoretical calculations are performed for the effective specific electrical resistivity of the liquid Fe–10 at.% Mn alloy in the temperature range 1720 to 2770 K. The certain temperature is determined, when the conductivity of the heterogeneous liquid alloy equals the conductivity of the iron solution in manganese with the uniform atom distribution. The obtained values of the certain temperature range between 2050– 2100 K, i.e., are higher than 1900–2000 K, at which the kink appears on the temperature curve of the electrical resistivity. Theoretical studies are presented for the percolation transition in heterogeneous liquid Fe–Mn alloys. The limit value is identified for the ratio between the electrical resistivity of liquid alloys and the inclusion, when a percolation transition is possible. The percolation threshold is determined as a volume fraction of inclusions, at which the effective specific electrical resistivity significantly reduces. The latter is calculated for the heterogeneous liquid alloy in the Maxwell approximation (interpreted by А. А. Snarskii).</description><subject>Alloys</subject><subject>Condensed Matter Physics</subject><subject>Degassing of metals</subject><subject>Electric properties</subject><subject>Electrical resistivity</subject><subject>Electromagnetism</subject><subject>Ferrous alloys</subject><subject>Hadrons</subject><subject>Heating</subject><subject>Heavy Ions</subject><subject>Inclusions</subject><subject>Iron</subject><subject>Lasers</subject><subject>Liquid alloys</subject><subject>Manganese</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Metals</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Percolation</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Specialty metals industry</subject><subject>Theoretical</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqNkMFKAzEQhoMoWKsv4GnB87aZJJtkj6W0KlQE0XNIs0lJ2e62yVbYm-_gG_okRlfwJjIMMwz_NzP8CF0DngDGYhoBQJIcE0jJCM_7EzSCQtC8JESeph5zlkspxTm6iHGLccK4GKHporamC97oOnuy0cfOv_quz1qXrfzh6KtsaT_e3h-abFbXbR8v0ZnTdbRXP3WMXpaL5_ldvnq8vZ_PVrmhpehyboXFTDIoKmokBltUxmlgrLSyshWjEq8LDUZQJqmTxlRECA6kMOs1LpygY3Qz7N2H9nC0sVPb9hiadFIRjhmTwDlPqsmg2ujaKt-4tgvapKjszpu2sc6n-UzQEgiTkv0bAAmYcVImgAyACW2MwTq1D36nQ68Aqy_r1WC9Starb-tVnyA6QDGJm40Nv8__QX0Cl2iFiw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Chikova, O. A.</creator><creator>Sinitsin, N. I.</creator><creator>V’yukhin, V. V.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>Electrical Resistivity of Liquid Fe–Mn Alloys</title><author>Chikova, O. A. ; Sinitsin, N. I. ; V’yukhin, V. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-6e7e048415d3c801e5dcfa1449e8ded4380b5a1c73483f8ccd2776125cbb05f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloys</topic><topic>Condensed Matter Physics</topic><topic>Degassing of metals</topic><topic>Electric properties</topic><topic>Electrical resistivity</topic><topic>Electromagnetism</topic><topic>Ferrous alloys</topic><topic>Hadrons</topic><topic>Heating</topic><topic>Heavy Ions</topic><topic>Inclusions</topic><topic>Iron</topic><topic>Lasers</topic><topic>Liquid alloys</topic><topic>Manganese</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Metals</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Percolation</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Specialty metals industry</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chikova, O. A.</creatorcontrib><creatorcontrib>Sinitsin, N. I.</creatorcontrib><creatorcontrib>V’yukhin, V. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian physics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chikova, O. A.</au><au>Sinitsin, N. I.</au><au>V’yukhin, V. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrical Resistivity of Liquid Fe–Mn Alloys</atitle><jtitle>Russian physics journal</jtitle><stitle>Russ Phys J</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>64</volume><issue>6</issue><spage>1039</spage><epage>1046</epage><pages>1039-1046</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>The paper deals with the specific electrical resistivity of liquid Fe–Mn alloys with the manganese content of 3.9, 6.0, 8.2, 10.3 and 13.2 at.%. A rotary-field electromagnetic method is used to measure this parameter. The experiments are conducted under heating conditions in the range from 1720 to 2070 K followed by the specimen cooling in pure helium. Most of alloys demonstrate a kink on the temperature curve of the specific electrical resistivity during heating up to 1900–2000 K. It is found that the specific electrical resistivity and the ratio between the conductivities of the liquid alloys and the inclusion grow with increasing manganese content in the alloy. Theoretical calculations are performed for the effective specific electrical resistivity of the liquid Fe–10 at.% Mn alloy in the temperature range 1720 to 2770 K. The certain temperature is determined, when the conductivity of the heterogeneous liquid alloy equals the conductivity of the iron solution in manganese with the uniform atom distribution. The obtained values of the certain temperature range between 2050– 2100 K, i.e., are higher than 1900–2000 K, at which the kink appears on the temperature curve of the electrical resistivity. Theoretical studies are presented for the percolation transition in heterogeneous liquid Fe–Mn alloys. The limit value is identified for the ratio between the electrical resistivity of liquid alloys and the inclusion, when a percolation transition is possible. The percolation threshold is determined as a volume fraction of inclusions, at which the effective specific electrical resistivity significantly reduces. The latter is calculated for the heterogeneous liquid alloy in the Maxwell approximation (interpreted by А. А. Snarskii).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-021-02426-y</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-8887
ispartof Russian physics journal, 2021-10, Vol.64 (6), p.1039-1046
issn 1064-8887
1573-9228
language eng
recordid cdi_proquest_journals_2604481666
source SpringerLink Journals
subjects Alloys
Condensed Matter Physics
Degassing of metals
Electric properties
Electrical resistivity
Electromagnetism
Ferrous alloys
Hadrons
Heating
Heavy Ions
Inclusions
Iron
Lasers
Liquid alloys
Manganese
Mathematical analysis
Mathematical and Computational Physics
Metals
Nuclear Physics
Optical Devices
Optics
Percolation
Photonics
Physics
Physics and Astronomy
Specialty metals industry
Theoretical
title Electrical Resistivity of Liquid Fe–Mn Alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A25%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrical%20Resistivity%20of%20Liquid%20Fe%E2%80%93Mn%20Alloys&rft.jtitle=Russian%20physics%20journal&rft.au=Chikova,%20O.%20A.&rft.date=2021-10-01&rft.volume=64&rft.issue=6&rft.spage=1039&rft.epage=1046&rft.pages=1039-1046&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-021-02426-y&rft_dat=%3Cgale_proqu%3EA739124884%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2604481666&rft_id=info:pmid/&rft_galeid=A739124884&rfr_iscdi=true