Asymmetric Cation‐Olefin Monocyclization by Engineered Squalene–Hopene Cyclases
Squalene–hopene cyclases (SHCs) have great potential for the industrial synthesis of enantiopure cyclic terpenoids. A limitation of SHC catalysis has been the enzymes’ strict (S)‐enantioselectivity at the stereocenter formed after the first cyclization step. To gain enantio‐complementary access to v...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2021-12, Vol.133 (50), p.26284-26290 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26290 |
---|---|
container_issue | 50 |
container_start_page | 26284 |
container_title | Angewandte Chemie |
container_volume | 133 |
creator | Eichenberger, Michael Hüppi, Sean Patsch, David Aeberli, Natalie Berweger, Raphael Dossenbach, Sandro Eichhorn, Eric Flachsmann, Felix Hortencio, Lucas Voirol, Francis Vollenweider, Sabine Bornscheuer, Uwe T. Buller, Rebecca |
description | Squalene–hopene cyclases (SHCs) have great potential for the industrial synthesis of enantiopure cyclic terpenoids. A limitation of SHC catalysis has been the enzymes’ strict (S)‐enantioselectivity at the stereocenter formed after the first cyclization step. To gain enantio‐complementary access to valuable monocyclic terpenoids, an SHC‐wild‐type library including 18 novel homologs was set up. A previously not described SHC (AciSHC) was found to synthesize small amounts of monocyclic (R)‐γ‐dihydroionone from (E/Z)‐geranylacetone. Using enzyme and process optimization, the conversion to the desired product was increased to 79 %. Notably, analyzed AciSHC variants could finely differentiate between the geometric geranylacetone isomers: While the (Z)‐isomer yielded the desired monocyclic (R)‐γ‐dihydroionone (>99 % ee), the (E)‐isomer was converted to the (S,S)‐bicyclic ether (>95 % ee). Applying the knowledge gained from the observed stereodivergent and enantioselective transformations to an additional SHC‐substrate pair, access to the complementary (S)‐γ‐dihydroionone (>99.9 % ee) could be obtained.
The intrinsic capability of squalene–hopene cyclases to convert (E)‐ or (Z)‐substrates enantiospecifically to (S)‐ or (R)‐configurated monocyclic terpenoids was put into action by a combination of enzyme evolution and substrate engineering for the synthesis of (S)‐ and (R)‐γ‐dihydroionone with >99 % ee. |
doi_str_mv | 10.1002/ange.202108037 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2603987985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2603987985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2027-17a3e2b2985981168d9bdf9a5b8d6acb84e6c87236d049fe0444ec5ecaaf11343</originalsourceid><addsrcrecordid>eNqFkM9OAjEQxhujiYhePW_iebHt_ml7JBsEE5QDem663VmyZGmhhZj1xCOY-IY8iUWMHj3NJPP7vpn5ELoleEAwpvfKLGBAMSWY44SdoR7JKIkTlrFz1MM4TWNOU3GJrrxfYoxzykQPzYe-W61g6xodFWrbWHPYf8xaqBsTPVljdafb5v17EJVdNDKLxgA4qKL5ZqdaMHDYf07sOjRREVjlwV-ji1q1Hm5-ah-9Poxeikk8nY0fi-E01uFKFhOmEqAlFTwTnJCcV6KsaqGykle50iVPIdec0SSvcCpqCB-koDPQStWEJGnSR3cn37Wzmx34rVzanTNhpaQ5TgRnwTpQgxOlnfXeQS3Xrlkp10mC5TE4eQxO_gYXBOIkeGta6P6h5fB5PPrTfgHTIHR6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2603987985</pqid></control><display><type>article</type><title>Asymmetric Cation‐Olefin Monocyclization by Engineered Squalene–Hopene Cyclases</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Eichenberger, Michael ; Hüppi, Sean ; Patsch, David ; Aeberli, Natalie ; Berweger, Raphael ; Dossenbach, Sandro ; Eichhorn, Eric ; Flachsmann, Felix ; Hortencio, Lucas ; Voirol, Francis ; Vollenweider, Sabine ; Bornscheuer, Uwe T. ; Buller, Rebecca</creator><creatorcontrib>Eichenberger, Michael ; Hüppi, Sean ; Patsch, David ; Aeberli, Natalie ; Berweger, Raphael ; Dossenbach, Sandro ; Eichhorn, Eric ; Flachsmann, Felix ; Hortencio, Lucas ; Voirol, Francis ; Vollenweider, Sabine ; Bornscheuer, Uwe T. ; Buller, Rebecca</creatorcontrib><description>Squalene–hopene cyclases (SHCs) have great potential for the industrial synthesis of enantiopure cyclic terpenoids. A limitation of SHC catalysis has been the enzymes’ strict (S)‐enantioselectivity at the stereocenter formed after the first cyclization step. To gain enantio‐complementary access to valuable monocyclic terpenoids, an SHC‐wild‐type library including 18 novel homologs was set up. A previously not described SHC (AciSHC) was found to synthesize small amounts of monocyclic (R)‐γ‐dihydroionone from (E/Z)‐geranylacetone. Using enzyme and process optimization, the conversion to the desired product was increased to 79 %. Notably, analyzed AciSHC variants could finely differentiate between the geometric geranylacetone isomers: While the (Z)‐isomer yielded the desired monocyclic (R)‐γ‐dihydroionone (>99 % ee), the (E)‐isomer was converted to the (S,S)‐bicyclic ether (>95 % ee). Applying the knowledge gained from the observed stereodivergent and enantioselective transformations to an additional SHC‐substrate pair, access to the complementary (S)‐γ‐dihydroionone (>99.9 % ee) could be obtained.
The intrinsic capability of squalene–hopene cyclases to convert (E)‐ or (Z)‐substrates enantiospecifically to (S)‐ or (R)‐configurated monocyclic terpenoids was put into action by a combination of enzyme evolution and substrate engineering for the synthesis of (S)‐ and (R)‐γ‐dihydroionone with >99 % ee.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202108037</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Chemistry ; chemoenzymatic synthesis ; cyclization ; Enantiomers ; Homology ; Isomers ; Optimization ; protein engineering ; Squalene ; squalene–hopene cyclases ; substrate engineering ; Substrates ; Terpenes</subject><ispartof>Angewandte Chemie, 2021-12, Vol.133 (50), p.26284-26290</ispartof><rights>2021 The Authors. Published by Wiley-VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2027-17a3e2b2985981168d9bdf9a5b8d6acb84e6c87236d049fe0444ec5ecaaf11343</citedby><cites>FETCH-LOGICAL-c2027-17a3e2b2985981168d9bdf9a5b8d6acb84e6c87236d049fe0444ec5ecaaf11343</cites><orcidid>0000-0002-5997-1616 ; 0000-0003-2113-6305 ; 0000-0003-0685-2696 ; 0000-0003-4749-4135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202108037$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202108037$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Eichenberger, Michael</creatorcontrib><creatorcontrib>Hüppi, Sean</creatorcontrib><creatorcontrib>Patsch, David</creatorcontrib><creatorcontrib>Aeberli, Natalie</creatorcontrib><creatorcontrib>Berweger, Raphael</creatorcontrib><creatorcontrib>Dossenbach, Sandro</creatorcontrib><creatorcontrib>Eichhorn, Eric</creatorcontrib><creatorcontrib>Flachsmann, Felix</creatorcontrib><creatorcontrib>Hortencio, Lucas</creatorcontrib><creatorcontrib>Voirol, Francis</creatorcontrib><creatorcontrib>Vollenweider, Sabine</creatorcontrib><creatorcontrib>Bornscheuer, Uwe T.</creatorcontrib><creatorcontrib>Buller, Rebecca</creatorcontrib><title>Asymmetric Cation‐Olefin Monocyclization by Engineered Squalene–Hopene Cyclases</title><title>Angewandte Chemie</title><description>Squalene–hopene cyclases (SHCs) have great potential for the industrial synthesis of enantiopure cyclic terpenoids. A limitation of SHC catalysis has been the enzymes’ strict (S)‐enantioselectivity at the stereocenter formed after the first cyclization step. To gain enantio‐complementary access to valuable monocyclic terpenoids, an SHC‐wild‐type library including 18 novel homologs was set up. A previously not described SHC (AciSHC) was found to synthesize small amounts of monocyclic (R)‐γ‐dihydroionone from (E/Z)‐geranylacetone. Using enzyme and process optimization, the conversion to the desired product was increased to 79 %. Notably, analyzed AciSHC variants could finely differentiate between the geometric geranylacetone isomers: While the (Z)‐isomer yielded the desired monocyclic (R)‐γ‐dihydroionone (>99 % ee), the (E)‐isomer was converted to the (S,S)‐bicyclic ether (>95 % ee). Applying the knowledge gained from the observed stereodivergent and enantioselective transformations to an additional SHC‐substrate pair, access to the complementary (S)‐γ‐dihydroionone (>99.9 % ee) could be obtained.
The intrinsic capability of squalene–hopene cyclases to convert (E)‐ or (Z)‐substrates enantiospecifically to (S)‐ or (R)‐configurated monocyclic terpenoids was put into action by a combination of enzyme evolution and substrate engineering for the synthesis of (S)‐ and (R)‐γ‐dihydroionone with >99 % ee.</description><subject>Catalysis</subject><subject>Chemistry</subject><subject>chemoenzymatic synthesis</subject><subject>cyclization</subject><subject>Enantiomers</subject><subject>Homology</subject><subject>Isomers</subject><subject>Optimization</subject><subject>protein engineering</subject><subject>Squalene</subject><subject>squalene–hopene cyclases</subject><subject>substrate engineering</subject><subject>Substrates</subject><subject>Terpenes</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM9OAjEQxhujiYhePW_iebHt_ml7JBsEE5QDem663VmyZGmhhZj1xCOY-IY8iUWMHj3NJPP7vpn5ELoleEAwpvfKLGBAMSWY44SdoR7JKIkTlrFz1MM4TWNOU3GJrrxfYoxzykQPzYe-W61g6xodFWrbWHPYf8xaqBsTPVljdafb5v17EJVdNDKLxgA4qKL5ZqdaMHDYf07sOjRREVjlwV-ji1q1Hm5-ah-9Poxeikk8nY0fi-E01uFKFhOmEqAlFTwTnJCcV6KsaqGykle50iVPIdec0SSvcCpqCB-koDPQStWEJGnSR3cn37Wzmx34rVzanTNhpaQ5TgRnwTpQgxOlnfXeQS3Xrlkp10mC5TE4eQxO_gYXBOIkeGta6P6h5fB5PPrTfgHTIHR6</recordid><startdate>20211206</startdate><enddate>20211206</enddate><creator>Eichenberger, Michael</creator><creator>Hüppi, Sean</creator><creator>Patsch, David</creator><creator>Aeberli, Natalie</creator><creator>Berweger, Raphael</creator><creator>Dossenbach, Sandro</creator><creator>Eichhorn, Eric</creator><creator>Flachsmann, Felix</creator><creator>Hortencio, Lucas</creator><creator>Voirol, Francis</creator><creator>Vollenweider, Sabine</creator><creator>Bornscheuer, Uwe T.</creator><creator>Buller, Rebecca</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5997-1616</orcidid><orcidid>https://orcid.org/0000-0003-2113-6305</orcidid><orcidid>https://orcid.org/0000-0003-0685-2696</orcidid><orcidid>https://orcid.org/0000-0003-4749-4135</orcidid></search><sort><creationdate>20211206</creationdate><title>Asymmetric Cation‐Olefin Monocyclization by Engineered Squalene–Hopene Cyclases</title><author>Eichenberger, Michael ; Hüppi, Sean ; Patsch, David ; Aeberli, Natalie ; Berweger, Raphael ; Dossenbach, Sandro ; Eichhorn, Eric ; Flachsmann, Felix ; Hortencio, Lucas ; Voirol, Francis ; Vollenweider, Sabine ; Bornscheuer, Uwe T. ; Buller, Rebecca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2027-17a3e2b2985981168d9bdf9a5b8d6acb84e6c87236d049fe0444ec5ecaaf11343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalysis</topic><topic>Chemistry</topic><topic>chemoenzymatic synthesis</topic><topic>cyclization</topic><topic>Enantiomers</topic><topic>Homology</topic><topic>Isomers</topic><topic>Optimization</topic><topic>protein engineering</topic><topic>Squalene</topic><topic>squalene–hopene cyclases</topic><topic>substrate engineering</topic><topic>Substrates</topic><topic>Terpenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eichenberger, Michael</creatorcontrib><creatorcontrib>Hüppi, Sean</creatorcontrib><creatorcontrib>Patsch, David</creatorcontrib><creatorcontrib>Aeberli, Natalie</creatorcontrib><creatorcontrib>Berweger, Raphael</creatorcontrib><creatorcontrib>Dossenbach, Sandro</creatorcontrib><creatorcontrib>Eichhorn, Eric</creatorcontrib><creatorcontrib>Flachsmann, Felix</creatorcontrib><creatorcontrib>Hortencio, Lucas</creatorcontrib><creatorcontrib>Voirol, Francis</creatorcontrib><creatorcontrib>Vollenweider, Sabine</creatorcontrib><creatorcontrib>Bornscheuer, Uwe T.</creatorcontrib><creatorcontrib>Buller, Rebecca</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eichenberger, Michael</au><au>Hüppi, Sean</au><au>Patsch, David</au><au>Aeberli, Natalie</au><au>Berweger, Raphael</au><au>Dossenbach, Sandro</au><au>Eichhorn, Eric</au><au>Flachsmann, Felix</au><au>Hortencio, Lucas</au><au>Voirol, Francis</au><au>Vollenweider, Sabine</au><au>Bornscheuer, Uwe T.</au><au>Buller, Rebecca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric Cation‐Olefin Monocyclization by Engineered Squalene–Hopene Cyclases</atitle><jtitle>Angewandte Chemie</jtitle><date>2021-12-06</date><risdate>2021</risdate><volume>133</volume><issue>50</issue><spage>26284</spage><epage>26290</epage><pages>26284-26290</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Squalene–hopene cyclases (SHCs) have great potential for the industrial synthesis of enantiopure cyclic terpenoids. A limitation of SHC catalysis has been the enzymes’ strict (S)‐enantioselectivity at the stereocenter formed after the first cyclization step. To gain enantio‐complementary access to valuable monocyclic terpenoids, an SHC‐wild‐type library including 18 novel homologs was set up. A previously not described SHC (AciSHC) was found to synthesize small amounts of monocyclic (R)‐γ‐dihydroionone from (E/Z)‐geranylacetone. Using enzyme and process optimization, the conversion to the desired product was increased to 79 %. Notably, analyzed AciSHC variants could finely differentiate between the geometric geranylacetone isomers: While the (Z)‐isomer yielded the desired monocyclic (R)‐γ‐dihydroionone (>99 % ee), the (E)‐isomer was converted to the (S,S)‐bicyclic ether (>95 % ee). Applying the knowledge gained from the observed stereodivergent and enantioselective transformations to an additional SHC‐substrate pair, access to the complementary (S)‐γ‐dihydroionone (>99.9 % ee) could be obtained.
The intrinsic capability of squalene–hopene cyclases to convert (E)‐ or (Z)‐substrates enantiospecifically to (S)‐ or (R)‐configurated monocyclic terpenoids was put into action by a combination of enzyme evolution and substrate engineering for the synthesis of (S)‐ and (R)‐γ‐dihydroionone with >99 % ee.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202108037</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5997-1616</orcidid><orcidid>https://orcid.org/0000-0003-2113-6305</orcidid><orcidid>https://orcid.org/0000-0003-0685-2696</orcidid><orcidid>https://orcid.org/0000-0003-4749-4135</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2021-12, Vol.133 (50), p.26284-26290 |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_2603987985 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Catalysis Chemistry chemoenzymatic synthesis cyclization Enantiomers Homology Isomers Optimization protein engineering Squalene squalene–hopene cyclases substrate engineering Substrates Terpenes |
title | Asymmetric Cation‐Olefin Monocyclization by Engineered Squalene–Hopene Cyclases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20Cation%E2%80%90Olefin%20Monocyclization%20by%20Engineered%20Squalene%E2%80%93Hopene%20Cyclases&rft.jtitle=Angewandte%20Chemie&rft.au=Eichenberger,%20Michael&rft.date=2021-12-06&rft.volume=133&rft.issue=50&rft.spage=26284&rft.epage=26290&rft.pages=26284-26290&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202108037&rft_dat=%3Cproquest_cross%3E2603987985%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2603987985&rft_id=info:pmid/&rfr_iscdi=true |