Asymmetric Cation‐Olefin Monocyclization by Engineered Squalene–Hopene Cyclases

Squalene–hopene cyclases (SHCs) have great potential for the industrial synthesis of enantiopure cyclic terpenoids. A limitation of SHC catalysis has been the enzymes’ strict (S)‐enantioselectivity at the stereocenter formed after the first cyclization step. To gain enantio‐complementary access to v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2021-12, Vol.133 (50), p.26284-26290
Hauptverfasser: Eichenberger, Michael, Hüppi, Sean, Patsch, David, Aeberli, Natalie, Berweger, Raphael, Dossenbach, Sandro, Eichhorn, Eric, Flachsmann, Felix, Hortencio, Lucas, Voirol, Francis, Vollenweider, Sabine, Bornscheuer, Uwe T., Buller, Rebecca
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26290
container_issue 50
container_start_page 26284
container_title Angewandte Chemie
container_volume 133
creator Eichenberger, Michael
Hüppi, Sean
Patsch, David
Aeberli, Natalie
Berweger, Raphael
Dossenbach, Sandro
Eichhorn, Eric
Flachsmann, Felix
Hortencio, Lucas
Voirol, Francis
Vollenweider, Sabine
Bornscheuer, Uwe T.
Buller, Rebecca
description Squalene–hopene cyclases (SHCs) have great potential for the industrial synthesis of enantiopure cyclic terpenoids. A limitation of SHC catalysis has been the enzymes’ strict (S)‐enantioselectivity at the stereocenter formed after the first cyclization step. To gain enantio‐complementary access to valuable monocyclic terpenoids, an SHC‐wild‐type library including 18 novel homologs was set up. A previously not described SHC (AciSHC) was found to synthesize small amounts of monocyclic (R)‐γ‐dihydroionone from (E/Z)‐geranylacetone. Using enzyme and process optimization, the conversion to the desired product was increased to 79 %. Notably, analyzed AciSHC variants could finely differentiate between the geometric geranylacetone isomers: While the (Z)‐isomer yielded the desired monocyclic (R)‐γ‐dihydroionone (>99 % ee), the (E)‐isomer was converted to the (S,S)‐bicyclic ether (>95 % ee). Applying the knowledge gained from the observed stereodivergent and enantioselective transformations to an additional SHC‐substrate pair, access to the complementary (S)‐γ‐dihydroionone (>99.9 % ee) could be obtained. The intrinsic capability of squalene–hopene cyclases to convert (E)‐ or (Z)‐substrates enantiospecifically to (S)‐ or (R)‐configurated monocyclic terpenoids was put into action by a combination of enzyme evolution and substrate engineering for the synthesis of (S)‐ and (R)‐γ‐dihydroionone with >99 % ee.
doi_str_mv 10.1002/ange.202108037
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2603987985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2603987985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2027-17a3e2b2985981168d9bdf9a5b8d6acb84e6c87236d049fe0444ec5ecaaf11343</originalsourceid><addsrcrecordid>eNqFkM9OAjEQxhujiYhePW_iebHt_ml7JBsEE5QDem663VmyZGmhhZj1xCOY-IY8iUWMHj3NJPP7vpn5ELoleEAwpvfKLGBAMSWY44SdoR7JKIkTlrFz1MM4TWNOU3GJrrxfYoxzykQPzYe-W61g6xodFWrbWHPYf8xaqBsTPVljdafb5v17EJVdNDKLxgA4qKL5ZqdaMHDYf07sOjRREVjlwV-ji1q1Hm5-ah-9Poxeikk8nY0fi-E01uFKFhOmEqAlFTwTnJCcV6KsaqGykle50iVPIdec0SSvcCpqCB-koDPQStWEJGnSR3cn37Wzmx34rVzanTNhpaQ5TgRnwTpQgxOlnfXeQS3Xrlkp10mC5TE4eQxO_gYXBOIkeGta6P6h5fB5PPrTfgHTIHR6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2603987985</pqid></control><display><type>article</type><title>Asymmetric Cation‐Olefin Monocyclization by Engineered Squalene–Hopene Cyclases</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Eichenberger, Michael ; Hüppi, Sean ; Patsch, David ; Aeberli, Natalie ; Berweger, Raphael ; Dossenbach, Sandro ; Eichhorn, Eric ; Flachsmann, Felix ; Hortencio, Lucas ; Voirol, Francis ; Vollenweider, Sabine ; Bornscheuer, Uwe T. ; Buller, Rebecca</creator><creatorcontrib>Eichenberger, Michael ; Hüppi, Sean ; Patsch, David ; Aeberli, Natalie ; Berweger, Raphael ; Dossenbach, Sandro ; Eichhorn, Eric ; Flachsmann, Felix ; Hortencio, Lucas ; Voirol, Francis ; Vollenweider, Sabine ; Bornscheuer, Uwe T. ; Buller, Rebecca</creatorcontrib><description>Squalene–hopene cyclases (SHCs) have great potential for the industrial synthesis of enantiopure cyclic terpenoids. A limitation of SHC catalysis has been the enzymes’ strict (S)‐enantioselectivity at the stereocenter formed after the first cyclization step. To gain enantio‐complementary access to valuable monocyclic terpenoids, an SHC‐wild‐type library including 18 novel homologs was set up. A previously not described SHC (AciSHC) was found to synthesize small amounts of monocyclic (R)‐γ‐dihydroionone from (E/Z)‐geranylacetone. Using enzyme and process optimization, the conversion to the desired product was increased to 79 %. Notably, analyzed AciSHC variants could finely differentiate between the geometric geranylacetone isomers: While the (Z)‐isomer yielded the desired monocyclic (R)‐γ‐dihydroionone (&gt;99 % ee), the (E)‐isomer was converted to the (S,S)‐bicyclic ether (&gt;95 % ee). Applying the knowledge gained from the observed stereodivergent and enantioselective transformations to an additional SHC‐substrate pair, access to the complementary (S)‐γ‐dihydroionone (&gt;99.9 % ee) could be obtained. The intrinsic capability of squalene–hopene cyclases to convert (E)‐ or (Z)‐substrates enantiospecifically to (S)‐ or (R)‐configurated monocyclic terpenoids was put into action by a combination of enzyme evolution and substrate engineering for the synthesis of (S)‐ and (R)‐γ‐dihydroionone with &gt;99 % ee.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202108037</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Chemistry ; chemoenzymatic synthesis ; cyclization ; Enantiomers ; Homology ; Isomers ; Optimization ; protein engineering ; Squalene ; squalene–hopene cyclases ; substrate engineering ; Substrates ; Terpenes</subject><ispartof>Angewandte Chemie, 2021-12, Vol.133 (50), p.26284-26290</ispartof><rights>2021 The Authors. Published by Wiley-VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2027-17a3e2b2985981168d9bdf9a5b8d6acb84e6c87236d049fe0444ec5ecaaf11343</citedby><cites>FETCH-LOGICAL-c2027-17a3e2b2985981168d9bdf9a5b8d6acb84e6c87236d049fe0444ec5ecaaf11343</cites><orcidid>0000-0002-5997-1616 ; 0000-0003-2113-6305 ; 0000-0003-0685-2696 ; 0000-0003-4749-4135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202108037$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202108037$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Eichenberger, Michael</creatorcontrib><creatorcontrib>Hüppi, Sean</creatorcontrib><creatorcontrib>Patsch, David</creatorcontrib><creatorcontrib>Aeberli, Natalie</creatorcontrib><creatorcontrib>Berweger, Raphael</creatorcontrib><creatorcontrib>Dossenbach, Sandro</creatorcontrib><creatorcontrib>Eichhorn, Eric</creatorcontrib><creatorcontrib>Flachsmann, Felix</creatorcontrib><creatorcontrib>Hortencio, Lucas</creatorcontrib><creatorcontrib>Voirol, Francis</creatorcontrib><creatorcontrib>Vollenweider, Sabine</creatorcontrib><creatorcontrib>Bornscheuer, Uwe T.</creatorcontrib><creatorcontrib>Buller, Rebecca</creatorcontrib><title>Asymmetric Cation‐Olefin Monocyclization by Engineered Squalene–Hopene Cyclases</title><title>Angewandte Chemie</title><description>Squalene–hopene cyclases (SHCs) have great potential for the industrial synthesis of enantiopure cyclic terpenoids. A limitation of SHC catalysis has been the enzymes’ strict (S)‐enantioselectivity at the stereocenter formed after the first cyclization step. To gain enantio‐complementary access to valuable monocyclic terpenoids, an SHC‐wild‐type library including 18 novel homologs was set up. A previously not described SHC (AciSHC) was found to synthesize small amounts of monocyclic (R)‐γ‐dihydroionone from (E/Z)‐geranylacetone. Using enzyme and process optimization, the conversion to the desired product was increased to 79 %. Notably, analyzed AciSHC variants could finely differentiate between the geometric geranylacetone isomers: While the (Z)‐isomer yielded the desired monocyclic (R)‐γ‐dihydroionone (&gt;99 % ee), the (E)‐isomer was converted to the (S,S)‐bicyclic ether (&gt;95 % ee). Applying the knowledge gained from the observed stereodivergent and enantioselective transformations to an additional SHC‐substrate pair, access to the complementary (S)‐γ‐dihydroionone (&gt;99.9 % ee) could be obtained. The intrinsic capability of squalene–hopene cyclases to convert (E)‐ or (Z)‐substrates enantiospecifically to (S)‐ or (R)‐configurated monocyclic terpenoids was put into action by a combination of enzyme evolution and substrate engineering for the synthesis of (S)‐ and (R)‐γ‐dihydroionone with &gt;99 % ee.</description><subject>Catalysis</subject><subject>Chemistry</subject><subject>chemoenzymatic synthesis</subject><subject>cyclization</subject><subject>Enantiomers</subject><subject>Homology</subject><subject>Isomers</subject><subject>Optimization</subject><subject>protein engineering</subject><subject>Squalene</subject><subject>squalene–hopene cyclases</subject><subject>substrate engineering</subject><subject>Substrates</subject><subject>Terpenes</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM9OAjEQxhujiYhePW_iebHt_ml7JBsEE5QDem663VmyZGmhhZj1xCOY-IY8iUWMHj3NJPP7vpn5ELoleEAwpvfKLGBAMSWY44SdoR7JKIkTlrFz1MM4TWNOU3GJrrxfYoxzykQPzYe-W61g6xodFWrbWHPYf8xaqBsTPVljdafb5v17EJVdNDKLxgA4qKL5ZqdaMHDYf07sOjRREVjlwV-ji1q1Hm5-ah-9Poxeikk8nY0fi-E01uFKFhOmEqAlFTwTnJCcV6KsaqGykle50iVPIdec0SSvcCpqCB-koDPQStWEJGnSR3cn37Wzmx34rVzanTNhpaQ5TgRnwTpQgxOlnfXeQS3Xrlkp10mC5TE4eQxO_gYXBOIkeGta6P6h5fB5PPrTfgHTIHR6</recordid><startdate>20211206</startdate><enddate>20211206</enddate><creator>Eichenberger, Michael</creator><creator>Hüppi, Sean</creator><creator>Patsch, David</creator><creator>Aeberli, Natalie</creator><creator>Berweger, Raphael</creator><creator>Dossenbach, Sandro</creator><creator>Eichhorn, Eric</creator><creator>Flachsmann, Felix</creator><creator>Hortencio, Lucas</creator><creator>Voirol, Francis</creator><creator>Vollenweider, Sabine</creator><creator>Bornscheuer, Uwe T.</creator><creator>Buller, Rebecca</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5997-1616</orcidid><orcidid>https://orcid.org/0000-0003-2113-6305</orcidid><orcidid>https://orcid.org/0000-0003-0685-2696</orcidid><orcidid>https://orcid.org/0000-0003-4749-4135</orcidid></search><sort><creationdate>20211206</creationdate><title>Asymmetric Cation‐Olefin Monocyclization by Engineered Squalene–Hopene Cyclases</title><author>Eichenberger, Michael ; Hüppi, Sean ; Patsch, David ; Aeberli, Natalie ; Berweger, Raphael ; Dossenbach, Sandro ; Eichhorn, Eric ; Flachsmann, Felix ; Hortencio, Lucas ; Voirol, Francis ; Vollenweider, Sabine ; Bornscheuer, Uwe T. ; Buller, Rebecca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2027-17a3e2b2985981168d9bdf9a5b8d6acb84e6c87236d049fe0444ec5ecaaf11343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalysis</topic><topic>Chemistry</topic><topic>chemoenzymatic synthesis</topic><topic>cyclization</topic><topic>Enantiomers</topic><topic>Homology</topic><topic>Isomers</topic><topic>Optimization</topic><topic>protein engineering</topic><topic>Squalene</topic><topic>squalene–hopene cyclases</topic><topic>substrate engineering</topic><topic>Substrates</topic><topic>Terpenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eichenberger, Michael</creatorcontrib><creatorcontrib>Hüppi, Sean</creatorcontrib><creatorcontrib>Patsch, David</creatorcontrib><creatorcontrib>Aeberli, Natalie</creatorcontrib><creatorcontrib>Berweger, Raphael</creatorcontrib><creatorcontrib>Dossenbach, Sandro</creatorcontrib><creatorcontrib>Eichhorn, Eric</creatorcontrib><creatorcontrib>Flachsmann, Felix</creatorcontrib><creatorcontrib>Hortencio, Lucas</creatorcontrib><creatorcontrib>Voirol, Francis</creatorcontrib><creatorcontrib>Vollenweider, Sabine</creatorcontrib><creatorcontrib>Bornscheuer, Uwe T.</creatorcontrib><creatorcontrib>Buller, Rebecca</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eichenberger, Michael</au><au>Hüppi, Sean</au><au>Patsch, David</au><au>Aeberli, Natalie</au><au>Berweger, Raphael</au><au>Dossenbach, Sandro</au><au>Eichhorn, Eric</au><au>Flachsmann, Felix</au><au>Hortencio, Lucas</au><au>Voirol, Francis</au><au>Vollenweider, Sabine</au><au>Bornscheuer, Uwe T.</au><au>Buller, Rebecca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymmetric Cation‐Olefin Monocyclization by Engineered Squalene–Hopene Cyclases</atitle><jtitle>Angewandte Chemie</jtitle><date>2021-12-06</date><risdate>2021</risdate><volume>133</volume><issue>50</issue><spage>26284</spage><epage>26290</epage><pages>26284-26290</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Squalene–hopene cyclases (SHCs) have great potential for the industrial synthesis of enantiopure cyclic terpenoids. A limitation of SHC catalysis has been the enzymes’ strict (S)‐enantioselectivity at the stereocenter formed after the first cyclization step. To gain enantio‐complementary access to valuable monocyclic terpenoids, an SHC‐wild‐type library including 18 novel homologs was set up. A previously not described SHC (AciSHC) was found to synthesize small amounts of monocyclic (R)‐γ‐dihydroionone from (E/Z)‐geranylacetone. Using enzyme and process optimization, the conversion to the desired product was increased to 79 %. Notably, analyzed AciSHC variants could finely differentiate between the geometric geranylacetone isomers: While the (Z)‐isomer yielded the desired monocyclic (R)‐γ‐dihydroionone (&gt;99 % ee), the (E)‐isomer was converted to the (S,S)‐bicyclic ether (&gt;95 % ee). Applying the knowledge gained from the observed stereodivergent and enantioselective transformations to an additional SHC‐substrate pair, access to the complementary (S)‐γ‐dihydroionone (&gt;99.9 % ee) could be obtained. The intrinsic capability of squalene–hopene cyclases to convert (E)‐ or (Z)‐substrates enantiospecifically to (S)‐ or (R)‐configurated monocyclic terpenoids was put into action by a combination of enzyme evolution and substrate engineering for the synthesis of (S)‐ and (R)‐γ‐dihydroionone with &gt;99 % ee.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202108037</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5997-1616</orcidid><orcidid>https://orcid.org/0000-0003-2113-6305</orcidid><orcidid>https://orcid.org/0000-0003-0685-2696</orcidid><orcidid>https://orcid.org/0000-0003-4749-4135</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2021-12, Vol.133 (50), p.26284-26290
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_2603987985
source Wiley Online Library Journals Frontfile Complete
subjects Catalysis
Chemistry
chemoenzymatic synthesis
cyclization
Enantiomers
Homology
Isomers
Optimization
protein engineering
Squalene
squalene–hopene cyclases
substrate engineering
Substrates
Terpenes
title Asymmetric Cation‐Olefin Monocyclization by Engineered Squalene–Hopene Cyclases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymmetric%20Cation%E2%80%90Olefin%20Monocyclization%20by%20Engineered%20Squalene%E2%80%93Hopene%20Cyclases&rft.jtitle=Angewandte%20Chemie&rft.au=Eichenberger,%20Michael&rft.date=2021-12-06&rft.volume=133&rft.issue=50&rft.spage=26284&rft.epage=26290&rft.pages=26284-26290&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202108037&rft_dat=%3Cproquest_cross%3E2603987985%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2603987985&rft_id=info:pmid/&rfr_iscdi=true