Microphysics and Optical Attenuation in Fog: Observations from Two Coastal Sites
A total of 15 fog events from two field campaigns are investigated: the High Energy Laser in Fog (HELFOG) project (central California) and the Toward Improving Coastal Fog Prediction (C-FOG) project (Ferryland Newfoundland). Nearly identical sensors were used in both projects to sample fog droplet-s...
Gespeichert in:
Veröffentlicht in: | Boundary-layer meteorology 2021-12, Vol.181 (2-3), p.267-292 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 292 |
---|---|
container_issue | 2-3 |
container_start_page | 267 |
container_title | Boundary-layer meteorology |
container_volume | 181 |
creator | Wang, Qing Yamaguchi, Ryan T. Kalogiros, John A. Daniels, Zachary Alappattu, Denny P. Jonsson, Haflidi Alvarenga, Oswaldo Olson, Alex Wauer, Benjamin J. Ortiz-Suslow, David G. Fernando, Harindra Joseph |
description | A total of 15 fog events from two field campaigns are investigated: the High Energy Laser in Fog (HELFOG) project (central California) and the Toward Improving Coastal Fog Prediction (C-FOG) project (Ferryland Newfoundland). Nearly identical sensors were used in both projects to sample fog droplet-size spectra, wind, turbulence, and thermodynamic properties near the surface. Concurrent measurements of visibility were made by the present weather detector in both experiments, with the addition of a two-ended transmissometer in the HELFOG campaign. The analyses focused first on contrasting the observed fog microphysics and the associated thermodynamics from fog events in the two locations. The optical attenuation by fog was investigated using three methods: (1) derived from Mie theory using the measured droplet-size distribution, (2) parametrized as a function of fog liquid water content, and (3) parametrized in terms of total fog droplet number concentration. The consistency of these methods was investigated. The HELFOG data result in an empirical relationship between the meteorological range and liquid water content. Validation of such relationship is problematic using the C-FOG data due to the presence of rain and other factors. The parametrization with droplet number concentration only does not provide a robust visibility calculation since it cannot represent the effects of droplet size on visibility. Finally, a preliminary analysis of the mixed fog/rain case is presented to illustrate the nature of the problem to promote future research. |
doi_str_mv | 10.1007/s10546-021-00675-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2603343267</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684108631</galeid><sourcerecordid>A684108631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-7055bf52bacbb8b53da1b7b622e60c17636eb3ed7718f78eef88b9aa5fd390293</originalsourceid><addsrcrecordid>eNqNkEtrVDEYhoMoOFb_gKuASzltLieXcTccrBYqI1jXIcn5MqbMJGOSsfTfG-eI7kSySPLyPrk8CL2m5JISoq4qJWKUA2F0IEQqMYgnaEWF4gMdFXuKVqTHg-Z0fI5e1Hrft4oKskKfP0Vf8vHbY42-YptmvD226O0eb1qDdLIt5oRjwtd59w5vXYXy45xVHEo-4LuHjKdsa-vEl9igvkTPgt1XePV7vkBfr9_fTR-H2-2Hm2lzO_iRsDYoIoQLgjnrndNO8NlSp5xkDCTxVEkuwXGYlaI6KA0QtHZra0WY-ZqwNb9Ab5ZzjyV_P0Ft5j6fSupXGiYJ5yNnUvXW5dLa2T2YmEJuxfo-ZjhEnxOE2PON1CMlWnLaAbYA3UqtBYI5lniw5dFQYn6pNotq01Wbs2ojOqQX6AFcDtVHSB7-gGfXbM0E7ytCp9jOAqd8Sq2jb_8f7W2-tGtvpB2Uv5_-x_N-AvmOoWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2603343267</pqid></control><display><type>article</type><title>Microphysics and Optical Attenuation in Fog: Observations from Two Coastal Sites</title><source>SpringerNature Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Wang, Qing ; Yamaguchi, Ryan T. ; Kalogiros, John A. ; Daniels, Zachary ; Alappattu, Denny P. ; Jonsson, Haflidi ; Alvarenga, Oswaldo ; Olson, Alex ; Wauer, Benjamin J. ; Ortiz-Suslow, David G. ; Fernando, Harindra Joseph</creator><creatorcontrib>Wang, Qing ; Yamaguchi, Ryan T. ; Kalogiros, John A. ; Daniels, Zachary ; Alappattu, Denny P. ; Jonsson, Haflidi ; Alvarenga, Oswaldo ; Olson, Alex ; Wauer, Benjamin J. ; Ortiz-Suslow, David G. ; Fernando, Harindra Joseph</creatorcontrib><description>A total of 15 fog events from two field campaigns are investigated: the High Energy Laser in Fog (HELFOG) project (central California) and the Toward Improving Coastal Fog Prediction (C-FOG) project (Ferryland Newfoundland). Nearly identical sensors were used in both projects to sample fog droplet-size spectra, wind, turbulence, and thermodynamic properties near the surface. Concurrent measurements of visibility were made by the present weather detector in both experiments, with the addition of a two-ended transmissometer in the HELFOG campaign. The analyses focused first on contrasting the observed fog microphysics and the associated thermodynamics from fog events in the two locations. The optical attenuation by fog was investigated using three methods: (1) derived from Mie theory using the measured droplet-size distribution, (2) parametrized as a function of fog liquid water content, and (3) parametrized in terms of total fog droplet number concentration. The consistency of these methods was investigated. The HELFOG data result in an empirical relationship between the meteorological range and liquid water content. Validation of such relationship is problematic using the C-FOG data due to the presence of rain and other factors. The parametrization with droplet number concentration only does not provide a robust visibility calculation since it cannot represent the effects of droplet size on visibility. Finally, a preliminary analysis of the mixed fog/rain case is presented to illustrate the nature of the problem to promote future research.</description><identifier>ISSN: 0006-8314</identifier><identifier>EISSN: 1573-1472</identifier><identifier>DOI: 10.1007/s10546-021-00675-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Atmospheric Protection/Air Quality Control/Air Pollution ; Atmospheric Sciences ; Attenuation ; Droplets ; Earth and Environmental Science ; Earth Sciences ; Empirical analysis ; Fog ; Fog droplets ; Lasers ; Liquid water content ; Meteorology ; Meteorology & Atmospheric Sciences ; Methods ; Microphysics ; Mie scattering ; Mie theory ; Moisture content ; Parameterization ; Physical Sciences ; Rain ; Research Article ; Science & Technology ; Size distribution ; Thermal properties ; Thermodynamic properties ; Thermodynamics ; Transmissometers ; Turbulence ; Visibility ; Water ; Water content</subject><ispartof>Boundary-layer meteorology, 2021-12, Vol.181 (2-3), p.267-292</ispartof><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021. corrected publication 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2021. corrected publication 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>4</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000712925300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c402t-7055bf52bacbb8b53da1b7b622e60c17636eb3ed7718f78eef88b9aa5fd390293</citedby><cites>FETCH-LOGICAL-c402t-7055bf52bacbb8b53da1b7b622e60c17636eb3ed7718f78eef88b9aa5fd390293</cites><orcidid>0000-0001-8441-1912 ; 0000-0001-8715-9206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10546-021-00675-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10546-021-00675-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,27933,27934,39267,41497,42566,51328</link.rule.ids></links><search><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Yamaguchi, Ryan T.</creatorcontrib><creatorcontrib>Kalogiros, John A.</creatorcontrib><creatorcontrib>Daniels, Zachary</creatorcontrib><creatorcontrib>Alappattu, Denny P.</creatorcontrib><creatorcontrib>Jonsson, Haflidi</creatorcontrib><creatorcontrib>Alvarenga, Oswaldo</creatorcontrib><creatorcontrib>Olson, Alex</creatorcontrib><creatorcontrib>Wauer, Benjamin J.</creatorcontrib><creatorcontrib>Ortiz-Suslow, David G.</creatorcontrib><creatorcontrib>Fernando, Harindra Joseph</creatorcontrib><title>Microphysics and Optical Attenuation in Fog: Observations from Two Coastal Sites</title><title>Boundary-layer meteorology</title><addtitle>Boundary-Layer Meteorol</addtitle><addtitle>BOUND-LAY METEOROL</addtitle><description>A total of 15 fog events from two field campaigns are investigated: the High Energy Laser in Fog (HELFOG) project (central California) and the Toward Improving Coastal Fog Prediction (C-FOG) project (Ferryland Newfoundland). Nearly identical sensors were used in both projects to sample fog droplet-size spectra, wind, turbulence, and thermodynamic properties near the surface. Concurrent measurements of visibility were made by the present weather detector in both experiments, with the addition of a two-ended transmissometer in the HELFOG campaign. The analyses focused first on contrasting the observed fog microphysics and the associated thermodynamics from fog events in the two locations. The optical attenuation by fog was investigated using three methods: (1) derived from Mie theory using the measured droplet-size distribution, (2) parametrized as a function of fog liquid water content, and (3) parametrized in terms of total fog droplet number concentration. The consistency of these methods was investigated. The HELFOG data result in an empirical relationship between the meteorological range and liquid water content. Validation of such relationship is problematic using the C-FOG data due to the presence of rain and other factors. The parametrization with droplet number concentration only does not provide a robust visibility calculation since it cannot represent the effects of droplet size on visibility. Finally, a preliminary analysis of the mixed fog/rain case is presented to illustrate the nature of the problem to promote future research.</description><subject>Analysis</subject><subject>Atmospheric Protection/Air Quality Control/Air Pollution</subject><subject>Atmospheric Sciences</subject><subject>Attenuation</subject><subject>Droplets</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Empirical analysis</subject><subject>Fog</subject><subject>Fog droplets</subject><subject>Lasers</subject><subject>Liquid water content</subject><subject>Meteorology</subject><subject>Meteorology & Atmospheric Sciences</subject><subject>Methods</subject><subject>Microphysics</subject><subject>Mie scattering</subject><subject>Mie theory</subject><subject>Moisture content</subject><subject>Parameterization</subject><subject>Physical Sciences</subject><subject>Rain</subject><subject>Research Article</subject><subject>Science & Technology</subject><subject>Size distribution</subject><subject>Thermal properties</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><subject>Transmissometers</subject><subject>Turbulence</subject><subject>Visibility</subject><subject>Water</subject><subject>Water content</subject><issn>0006-8314</issn><issn>1573-1472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkEtrVDEYhoMoOFb_gKuASzltLieXcTccrBYqI1jXIcn5MqbMJGOSsfTfG-eI7kSySPLyPrk8CL2m5JISoq4qJWKUA2F0IEQqMYgnaEWF4gMdFXuKVqTHg-Z0fI5e1Hrft4oKskKfP0Vf8vHbY42-YptmvD226O0eb1qDdLIt5oRjwtd59w5vXYXy45xVHEo-4LuHjKdsa-vEl9igvkTPgt1XePV7vkBfr9_fTR-H2-2Hm2lzO_iRsDYoIoQLgjnrndNO8NlSp5xkDCTxVEkuwXGYlaI6KA0QtHZra0WY-ZqwNb9Ab5ZzjyV_P0Ft5j6fSupXGiYJ5yNnUvXW5dLa2T2YmEJuxfo-ZjhEnxOE2PON1CMlWnLaAbYA3UqtBYI5lniw5dFQYn6pNotq01Wbs2ojOqQX6AFcDtVHSB7-gGfXbM0E7ytCp9jOAqd8Sq2jb_8f7W2-tGtvpB2Uv5_-x_N-AvmOoWw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Wang, Qing</creator><creator>Yamaguchi, Ryan T.</creator><creator>Kalogiros, John A.</creator><creator>Daniels, Zachary</creator><creator>Alappattu, Denny P.</creator><creator>Jonsson, Haflidi</creator><creator>Alvarenga, Oswaldo</creator><creator>Olson, Alex</creator><creator>Wauer, Benjamin J.</creator><creator>Ortiz-Suslow, David G.</creator><creator>Fernando, Harindra Joseph</creator><general>Springer Netherlands</general><general>Springer Nature</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8441-1912</orcidid><orcidid>https://orcid.org/0000-0001-8715-9206</orcidid></search><sort><creationdate>20211201</creationdate><title>Microphysics and Optical Attenuation in Fog: Observations from Two Coastal Sites</title><author>Wang, Qing ; Yamaguchi, Ryan T. ; Kalogiros, John A. ; Daniels, Zachary ; Alappattu, Denny P. ; Jonsson, Haflidi ; Alvarenga, Oswaldo ; Olson, Alex ; Wauer, Benjamin J. ; Ortiz-Suslow, David G. ; Fernando, Harindra Joseph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-7055bf52bacbb8b53da1b7b622e60c17636eb3ed7718f78eef88b9aa5fd390293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Atmospheric Protection/Air Quality Control/Air Pollution</topic><topic>Atmospheric Sciences</topic><topic>Attenuation</topic><topic>Droplets</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Empirical analysis</topic><topic>Fog</topic><topic>Fog droplets</topic><topic>Lasers</topic><topic>Liquid water content</topic><topic>Meteorology</topic><topic>Meteorology & Atmospheric Sciences</topic><topic>Methods</topic><topic>Microphysics</topic><topic>Mie scattering</topic><topic>Mie theory</topic><topic>Moisture content</topic><topic>Parameterization</topic><topic>Physical Sciences</topic><topic>Rain</topic><topic>Research Article</topic><topic>Science & Technology</topic><topic>Size distribution</topic><topic>Thermal properties</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><topic>Transmissometers</topic><topic>Turbulence</topic><topic>Visibility</topic><topic>Water</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qing</creatorcontrib><creatorcontrib>Yamaguchi, Ryan T.</creatorcontrib><creatorcontrib>Kalogiros, John A.</creatorcontrib><creatorcontrib>Daniels, Zachary</creatorcontrib><creatorcontrib>Alappattu, Denny P.</creatorcontrib><creatorcontrib>Jonsson, Haflidi</creatorcontrib><creatorcontrib>Alvarenga, Oswaldo</creatorcontrib><creatorcontrib>Olson, Alex</creatorcontrib><creatorcontrib>Wauer, Benjamin J.</creatorcontrib><creatorcontrib>Ortiz-Suslow, David G.</creatorcontrib><creatorcontrib>Fernando, Harindra Joseph</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Boundary-layer meteorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qing</au><au>Yamaguchi, Ryan T.</au><au>Kalogiros, John A.</au><au>Daniels, Zachary</au><au>Alappattu, Denny P.</au><au>Jonsson, Haflidi</au><au>Alvarenga, Oswaldo</au><au>Olson, Alex</au><au>Wauer, Benjamin J.</au><au>Ortiz-Suslow, David G.</au><au>Fernando, Harindra Joseph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microphysics and Optical Attenuation in Fog: Observations from Two Coastal Sites</atitle><jtitle>Boundary-layer meteorology</jtitle><stitle>Boundary-Layer Meteorol</stitle><stitle>BOUND-LAY METEOROL</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>181</volume><issue>2-3</issue><spage>267</spage><epage>292</epage><pages>267-292</pages><issn>0006-8314</issn><eissn>1573-1472</eissn><abstract>A total of 15 fog events from two field campaigns are investigated: the High Energy Laser in Fog (HELFOG) project (central California) and the Toward Improving Coastal Fog Prediction (C-FOG) project (Ferryland Newfoundland). Nearly identical sensors were used in both projects to sample fog droplet-size spectra, wind, turbulence, and thermodynamic properties near the surface. Concurrent measurements of visibility were made by the present weather detector in both experiments, with the addition of a two-ended transmissometer in the HELFOG campaign. The analyses focused first on contrasting the observed fog microphysics and the associated thermodynamics from fog events in the two locations. The optical attenuation by fog was investigated using three methods: (1) derived from Mie theory using the measured droplet-size distribution, (2) parametrized as a function of fog liquid water content, and (3) parametrized in terms of total fog droplet number concentration. The consistency of these methods was investigated. The HELFOG data result in an empirical relationship between the meteorological range and liquid water content. Validation of such relationship is problematic using the C-FOG data due to the presence of rain and other factors. The parametrization with droplet number concentration only does not provide a robust visibility calculation since it cannot represent the effects of droplet size on visibility. Finally, a preliminary analysis of the mixed fog/rain case is presented to illustrate the nature of the problem to promote future research.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10546-021-00675-5</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-8441-1912</orcidid><orcidid>https://orcid.org/0000-0001-8715-9206</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-8314 |
ispartof | Boundary-layer meteorology, 2021-12, Vol.181 (2-3), p.267-292 |
issn | 0006-8314 1573-1472 |
language | eng |
recordid | cdi_proquest_journals_2603343267 |
source | SpringerNature Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Analysis Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Attenuation Droplets Earth and Environmental Science Earth Sciences Empirical analysis Fog Fog droplets Lasers Liquid water content Meteorology Meteorology & Atmospheric Sciences Methods Microphysics Mie scattering Mie theory Moisture content Parameterization Physical Sciences Rain Research Article Science & Technology Size distribution Thermal properties Thermodynamic properties Thermodynamics Transmissometers Turbulence Visibility Water Water content |
title | Microphysics and Optical Attenuation in Fog: Observations from Two Coastal Sites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T21%3A49%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microphysics%20and%20Optical%20Attenuation%20in%20Fog:%20Observations%20from%20Two%20Coastal%20Sites&rft.jtitle=Boundary-layer%20meteorology&rft.au=Wang,%20Qing&rft.date=2021-12-01&rft.volume=181&rft.issue=2-3&rft.spage=267&rft.epage=292&rft.pages=267-292&rft.issn=0006-8314&rft.eissn=1573-1472&rft_id=info:doi/10.1007/s10546-021-00675-5&rft_dat=%3Cgale_proqu%3EA684108631%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2603343267&rft_id=info:pmid/&rft_galeid=A684108631&rfr_iscdi=true |