Filler size effects on the microstructure and properties of polymer-ceramic nanocomposites using a semicrystalline matrix

Size effects of ceramic nanofiller on polymer-ceramic nanocomposites in terms of microstructure and related properties were studied using P(VDF-CTFE) matrix filled with BaTiO 3 (BTO) nanoparticles in the sizes of 50, 100, 150, and 200 nm respectively. The experimental results show that the dielectri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2021-12, Vol.56 (36), p.19983-19995
Hauptverfasser: Lu, Xu, Deng, Wei, Wei, Jindong, Zhu, Yisong, Ren, Pengrong, Wan, Yuhui, Yan, Fuxue, Jin, Li, Zhang, Lin, Cheng, Z.-Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19995
container_issue 36
container_start_page 19983
container_title Journal of materials science
container_volume 56
creator Lu, Xu
Deng, Wei
Wei, Jindong
Zhu, Yisong
Ren, Pengrong
Wan, Yuhui
Yan, Fuxue
Jin, Li
Zhang, Lin
Cheng, Z.-Y.
description Size effects of ceramic nanofiller on polymer-ceramic nanocomposites in terms of microstructure and related properties were studied using P(VDF-CTFE) matrix filled with BaTiO 3 (BTO) nanoparticles in the sizes of 50, 100, 150, and 200 nm respectively. The experimental results show that the dielectric constant ( ε r ) of the P(VDF-CTFE)-BTO nanocomposites significantly increases with increasing size of the nanofiller. Based on Lichtenecker’s mixing law, the ε r of the BTO nanoparticles was calculated from the ε r of the nanocomposites and the results indicate that the ε r of the BTO nanoparticles increases with increasing size from 50–200 nm. The XRD and DSC results suggest that the crystals of P(VDF-CTFE) matrix are of α and γ phases, and the presence of BTO nanofiller favors the formation of the γ phase. Regarding the dielectric responses associated with the chain movement of a polar matrix, the smaller the nanofiller the stronger the influence on the mobility of polymer segments (i.e., glass transition), while the larger the nanofiller the higher the mobility of long polymer chains at high temperatures. Lichtenecker’s mixing law was also used to calculate the ε r of the BTO nanoparticles from the ε r of the nanocomposites at different temperatures. It is found that the applicability of a mixing law used in the polymer-ceramic nanocomposites is strongly related to the dielectric loss of the polymer matrix that is associated with the mobility of polymer chains for the polar polymers, especially at high temperatures. In addition, the dielectric strength ( E b ) decreases significantly with increasing size of the nanofiller while the polarization under a same electric field does not change much, which experimentally suggests that smaller ceramic nanofiller is preferred to obtain a high E b .
doi_str_mv 10.1007/s10853-021-06555-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2603341738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A684108580</galeid><sourcerecordid>A684108580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-1e95be34676c77d34f4e057a5ac4e6a83af8dd2e18f290c584386325996cdf33</originalsourceid><addsrcrecordid>eNp9kU1rHSEYhSW00Nvb_oGuhK66MPVjdJxlCE0TCATS7MU6rzeGuTpVB3L76-t0AiWb4kKQ5xwP5yD0idFzRmn_tTCqpSCUM0KVlJLQM7Rjshek01S8QTtKOSe8U-wdel_KE6VU9pzt0OkqTBNkXMJvwOA9uFpwirg-Aj4Gl1OpeXF1yYBtHPGc0wy5BmiQx3OaTkfIxEG2DcbRxuTScU4l1EYsJcQDtrjA6nQq1U5TiM3X1hyeP6C33k4FPr7ce_Rw9e3h8prc3n2_uby4JU4MvBIGg_wJolO9cn0_is530LJbaV0HymphvR5HDkx7PlAndSe0ElwOg3KjF2KPPm-2LfqvBUo1T2nJsf1ouKJCdKwXulHnG3WwE5gQfarZunbGNXuK4EN7v1C6W4tule7Rl1eCxlR4rge7lGJufty_ZvnGrnWWDN7MORxtPhlGzTqf2eYzbT7zdz6zisQmKg2OB8j_cv9H9Qdcr56x</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2603341738</pqid></control><display><type>article</type><title>Filler size effects on the microstructure and properties of polymer-ceramic nanocomposites using a semicrystalline matrix</title><source>SpringerLink Journals</source><creator>Lu, Xu ; Deng, Wei ; Wei, Jindong ; Zhu, Yisong ; Ren, Pengrong ; Wan, Yuhui ; Yan, Fuxue ; Jin, Li ; Zhang, Lin ; Cheng, Z.-Y.</creator><creatorcontrib>Lu, Xu ; Deng, Wei ; Wei, Jindong ; Zhu, Yisong ; Ren, Pengrong ; Wan, Yuhui ; Yan, Fuxue ; Jin, Li ; Zhang, Lin ; Cheng, Z.-Y.</creatorcontrib><description>Size effects of ceramic nanofiller on polymer-ceramic nanocomposites in terms of microstructure and related properties were studied using P(VDF-CTFE) matrix filled with BaTiO 3 (BTO) nanoparticles in the sizes of 50, 100, 150, and 200 nm respectively. The experimental results show that the dielectric constant ( ε r ) of the P(VDF-CTFE)-BTO nanocomposites significantly increases with increasing size of the nanofiller. Based on Lichtenecker’s mixing law, the ε r of the BTO nanoparticles was calculated from the ε r of the nanocomposites and the results indicate that the ε r of the BTO nanoparticles increases with increasing size from 50–200 nm. The XRD and DSC results suggest that the crystals of P(VDF-CTFE) matrix are of α and γ phases, and the presence of BTO nanofiller favors the formation of the γ phase. Regarding the dielectric responses associated with the chain movement of a polar matrix, the smaller the nanofiller the stronger the influence on the mobility of polymer segments (i.e., glass transition), while the larger the nanofiller the higher the mobility of long polymer chains at high temperatures. Lichtenecker’s mixing law was also used to calculate the ε r of the BTO nanoparticles from the ε r of the nanocomposites at different temperatures. It is found that the applicability of a mixing law used in the polymer-ceramic nanocomposites is strongly related to the dielectric loss of the polymer matrix that is associated with the mobility of polymer chains for the polar polymers, especially at high temperatures. In addition, the dielectric strength ( E b ) decreases significantly with increasing size of the nanofiller while the polarization under a same electric field does not change much, which experimentally suggests that smaller ceramic nanofiller is preferred to obtain a high E b .</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-021-06555-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Barium titanates ; Ceramics ; Chain mobility ; Chains (polymeric) ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chlorotrifluoroethylene ; Classical Mechanics ; Composites &amp; Nanocomposites ; Crystallography and Scattering Methods ; Dielectric loss ; Dielectric strength ; Electric fields ; Electric properties ; Gamma phase ; Glass transition ; High temperature ; Laws, regulations and rules ; Materials Science ; Mathematical analysis ; Microstructure ; Nanocomposites ; Nanoparticles ; Polymer Sciences ; Polymers ; Size effects ; Solid Mechanics</subject><ispartof>Journal of materials science, 2021-12, Vol.56 (36), p.19983-19995</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-1e95be34676c77d34f4e057a5ac4e6a83af8dd2e18f290c584386325996cdf33</citedby><cites>FETCH-LOGICAL-c392t-1e95be34676c77d34f4e057a5ac4e6a83af8dd2e18f290c584386325996cdf33</cites><orcidid>0000-0001-7586-328X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-021-06555-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-021-06555-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Lu, Xu</creatorcontrib><creatorcontrib>Deng, Wei</creatorcontrib><creatorcontrib>Wei, Jindong</creatorcontrib><creatorcontrib>Zhu, Yisong</creatorcontrib><creatorcontrib>Ren, Pengrong</creatorcontrib><creatorcontrib>Wan, Yuhui</creatorcontrib><creatorcontrib>Yan, Fuxue</creatorcontrib><creatorcontrib>Jin, Li</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Cheng, Z.-Y.</creatorcontrib><title>Filler size effects on the microstructure and properties of polymer-ceramic nanocomposites using a semicrystalline matrix</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Size effects of ceramic nanofiller on polymer-ceramic nanocomposites in terms of microstructure and related properties were studied using P(VDF-CTFE) matrix filled with BaTiO 3 (BTO) nanoparticles in the sizes of 50, 100, 150, and 200 nm respectively. The experimental results show that the dielectric constant ( ε r ) of the P(VDF-CTFE)-BTO nanocomposites significantly increases with increasing size of the nanofiller. Based on Lichtenecker’s mixing law, the ε r of the BTO nanoparticles was calculated from the ε r of the nanocomposites and the results indicate that the ε r of the BTO nanoparticles increases with increasing size from 50–200 nm. The XRD and DSC results suggest that the crystals of P(VDF-CTFE) matrix are of α and γ phases, and the presence of BTO nanofiller favors the formation of the γ phase. Regarding the dielectric responses associated with the chain movement of a polar matrix, the smaller the nanofiller the stronger the influence on the mobility of polymer segments (i.e., glass transition), while the larger the nanofiller the higher the mobility of long polymer chains at high temperatures. Lichtenecker’s mixing law was also used to calculate the ε r of the BTO nanoparticles from the ε r of the nanocomposites at different temperatures. It is found that the applicability of a mixing law used in the polymer-ceramic nanocomposites is strongly related to the dielectric loss of the polymer matrix that is associated with the mobility of polymer chains for the polar polymers, especially at high temperatures. In addition, the dielectric strength ( E b ) decreases significantly with increasing size of the nanofiller while the polarization under a same electric field does not change much, which experimentally suggests that smaller ceramic nanofiller is preferred to obtain a high E b .</description><subject>Analysis</subject><subject>Barium titanates</subject><subject>Ceramics</subject><subject>Chain mobility</subject><subject>Chains (polymeric)</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chlorotrifluoroethylene</subject><subject>Classical Mechanics</subject><subject>Composites &amp; Nanocomposites</subject><subject>Crystallography and Scattering Methods</subject><subject>Dielectric loss</subject><subject>Dielectric strength</subject><subject>Electric fields</subject><subject>Electric properties</subject><subject>Gamma phase</subject><subject>Glass transition</subject><subject>High temperature</subject><subject>Laws, regulations and rules</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Microstructure</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Size effects</subject><subject>Solid Mechanics</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU1rHSEYhSW00Nvb_oGuhK66MPVjdJxlCE0TCATS7MU6rzeGuTpVB3L76-t0AiWb4kKQ5xwP5yD0idFzRmn_tTCqpSCUM0KVlJLQM7Rjshek01S8QTtKOSe8U-wdel_KE6VU9pzt0OkqTBNkXMJvwOA9uFpwirg-Aj4Gl1OpeXF1yYBtHPGc0wy5BmiQx3OaTkfIxEG2DcbRxuTScU4l1EYsJcQDtrjA6nQq1U5TiM3X1hyeP6C33k4FPr7ce_Rw9e3h8prc3n2_uby4JU4MvBIGg_wJolO9cn0_is530LJbaV0HymphvR5HDkx7PlAndSe0ElwOg3KjF2KPPm-2LfqvBUo1T2nJsf1ouKJCdKwXulHnG3WwE5gQfarZunbGNXuK4EN7v1C6W4tule7Rl1eCxlR4rge7lGJufty_ZvnGrnWWDN7MORxtPhlGzTqf2eYzbT7zdz6zisQmKg2OB8j_cv9H9Qdcr56x</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Lu, Xu</creator><creator>Deng, Wei</creator><creator>Wei, Jindong</creator><creator>Zhu, Yisong</creator><creator>Ren, Pengrong</creator><creator>Wan, Yuhui</creator><creator>Yan, Fuxue</creator><creator>Jin, Li</creator><creator>Zhang, Lin</creator><creator>Cheng, Z.-Y.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-7586-328X</orcidid></search><sort><creationdate>20211201</creationdate><title>Filler size effects on the microstructure and properties of polymer-ceramic nanocomposites using a semicrystalline matrix</title><author>Lu, Xu ; Deng, Wei ; Wei, Jindong ; Zhu, Yisong ; Ren, Pengrong ; Wan, Yuhui ; Yan, Fuxue ; Jin, Li ; Zhang, Lin ; Cheng, Z.-Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-1e95be34676c77d34f4e057a5ac4e6a83af8dd2e18f290c584386325996cdf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analysis</topic><topic>Barium titanates</topic><topic>Ceramics</topic><topic>Chain mobility</topic><topic>Chains (polymeric)</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chlorotrifluoroethylene</topic><topic>Classical Mechanics</topic><topic>Composites &amp; Nanocomposites</topic><topic>Crystallography and Scattering Methods</topic><topic>Dielectric loss</topic><topic>Dielectric strength</topic><topic>Electric fields</topic><topic>Electric properties</topic><topic>Gamma phase</topic><topic>Glass transition</topic><topic>High temperature</topic><topic>Laws, regulations and rules</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Microstructure</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Size effects</topic><topic>Solid Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Xu</creatorcontrib><creatorcontrib>Deng, Wei</creatorcontrib><creatorcontrib>Wei, Jindong</creatorcontrib><creatorcontrib>Zhu, Yisong</creatorcontrib><creatorcontrib>Ren, Pengrong</creatorcontrib><creatorcontrib>Wan, Yuhui</creatorcontrib><creatorcontrib>Yan, Fuxue</creatorcontrib><creatorcontrib>Jin, Li</creatorcontrib><creatorcontrib>Zhang, Lin</creatorcontrib><creatorcontrib>Cheng, Z.-Y.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Xu</au><au>Deng, Wei</au><au>Wei, Jindong</au><au>Zhu, Yisong</au><au>Ren, Pengrong</au><au>Wan, Yuhui</au><au>Yan, Fuxue</au><au>Jin, Li</au><au>Zhang, Lin</au><au>Cheng, Z.-Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Filler size effects on the microstructure and properties of polymer-ceramic nanocomposites using a semicrystalline matrix</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>56</volume><issue>36</issue><spage>19983</spage><epage>19995</epage><pages>19983-19995</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Size effects of ceramic nanofiller on polymer-ceramic nanocomposites in terms of microstructure and related properties were studied using P(VDF-CTFE) matrix filled with BaTiO 3 (BTO) nanoparticles in the sizes of 50, 100, 150, and 200 nm respectively. The experimental results show that the dielectric constant ( ε r ) of the P(VDF-CTFE)-BTO nanocomposites significantly increases with increasing size of the nanofiller. Based on Lichtenecker’s mixing law, the ε r of the BTO nanoparticles was calculated from the ε r of the nanocomposites and the results indicate that the ε r of the BTO nanoparticles increases with increasing size from 50–200 nm. The XRD and DSC results suggest that the crystals of P(VDF-CTFE) matrix are of α and γ phases, and the presence of BTO nanofiller favors the formation of the γ phase. Regarding the dielectric responses associated with the chain movement of a polar matrix, the smaller the nanofiller the stronger the influence on the mobility of polymer segments (i.e., glass transition), while the larger the nanofiller the higher the mobility of long polymer chains at high temperatures. Lichtenecker’s mixing law was also used to calculate the ε r of the BTO nanoparticles from the ε r of the nanocomposites at different temperatures. It is found that the applicability of a mixing law used in the polymer-ceramic nanocomposites is strongly related to the dielectric loss of the polymer matrix that is associated with the mobility of polymer chains for the polar polymers, especially at high temperatures. In addition, the dielectric strength ( E b ) decreases significantly with increasing size of the nanofiller while the polarization under a same electric field does not change much, which experimentally suggests that smaller ceramic nanofiller is preferred to obtain a high E b .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-021-06555-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7586-328X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2021-12, Vol.56 (36), p.19983-19995
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2603341738
source SpringerLink Journals
subjects Analysis
Barium titanates
Ceramics
Chain mobility
Chains (polymeric)
Characterization and Evaluation of Materials
Chemistry and Materials Science
Chlorotrifluoroethylene
Classical Mechanics
Composites & Nanocomposites
Crystallography and Scattering Methods
Dielectric loss
Dielectric strength
Electric fields
Electric properties
Gamma phase
Glass transition
High temperature
Laws, regulations and rules
Materials Science
Mathematical analysis
Microstructure
Nanocomposites
Nanoparticles
Polymer Sciences
Polymers
Size effects
Solid Mechanics
title Filler size effects on the microstructure and properties of polymer-ceramic nanocomposites using a semicrystalline matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A14%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Filler%20size%20effects%20on%20the%20microstructure%20and%20properties%20of%20polymer-ceramic%20nanocomposites%20using%20a%20semicrystalline%20matrix&rft.jtitle=Journal%20of%20materials%20science&rft.au=Lu,%20Xu&rft.date=2021-12-01&rft.volume=56&rft.issue=36&rft.spage=19983&rft.epage=19995&rft.pages=19983-19995&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-021-06555-0&rft_dat=%3Cgale_proqu%3EA684108580%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2603341738&rft_id=info:pmid/&rft_galeid=A684108580&rfr_iscdi=true