Neural Sequence Transformation
Monte Carlo integration is a technique for numerically estimating a definite integral by stochastically sampling its integrand. These samples can be averaged to make an improved estimate, and the progressive estimates form a sequence that converges to the integral value on the limit. Unfortunately,...
Gespeichert in:
Veröffentlicht in: | Computer graphics forum 2021-10, Vol.40 (7), p.131-140 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 140 |
---|---|
container_issue | 7 |
container_start_page | 131 |
container_title | Computer graphics forum |
container_volume | 40 |
creator | Mukherjee, Sabyasachi Mukherjee, Sayan Hua, Binh‐Son Umetani, Nobuyuki Meister, Daniel |
description | Monte Carlo integration is a technique for numerically estimating a definite integral by stochastically sampling its integrand. These samples can be averaged to make an improved estimate, and the progressive estimates form a sequence that converges to the integral value on the limit. Unfortunately, the sequence of Monte Carlo estimates converges at a rate of O(), where n denotes the sample count, effectively slowing down as more samples are drawn. To overcome this, we can apply sequence transformation, which transforms one converging sequence into another with the goal of accelerating the rate of convergence. However, analytically finding such a transformation for Monte Carlo estimates can be challenging, due to both the stochastic nature of the sequence, and the complexity of the integrand. In this paper, we propose to leverage neural networks to learn sequence transformations that improve the convergence of the progressive estimates of Monte Carlo integration. We demonstrate the effectiveness of our method on several canonical 1D integration problems as well as applications in light transport simulation. |
doi_str_mv | 10.1111/cgf.14407 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2602939252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2602939252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3237-5449f35d02916a6302738da1eee559fb28ba2730a2acb148497337cb8143b1773</originalsourceid><addsrcrecordid>eNp1j09LAzEQxYMouFYPfgEpePKw7eT_5iiLrULRg_UcsmkiW7abmnSRfvtG16tzmWH4zXvzELrFMMO55vbTzzBjIM9QgZmQZSW4OkcF4DxL4PwSXaW0BQAmBS_Q3asboumm7-5rcL1103U0ffIh7syhDf01uvCmS-7mr0_Qx-JpXT-Xq7flS_24Ki0lVJacMeUp3wBRWBhBgUhabQx2znGufEOqxuQVGGJsg1nFlKRU2qbCjDZYSjpB96PuPob8SDrobRhiny01EVmVKsJJph5GysaQUnRe72O7M_GoMeif-DrH17_xMzsf2e-2c8f_QV0vF-PFCV-bWKg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602939252</pqid></control><display><type>article</type><title>Neural Sequence Transformation</title><source>Business Source Complete</source><source>Wiley Online Library All Journals</source><creator>Mukherjee, Sabyasachi ; Mukherjee, Sayan ; Hua, Binh‐Son ; Umetani, Nobuyuki ; Meister, Daniel</creator><creatorcontrib>Mukherjee, Sabyasachi ; Mukherjee, Sayan ; Hua, Binh‐Son ; Umetani, Nobuyuki ; Meister, Daniel</creatorcontrib><description>Monte Carlo integration is a technique for numerically estimating a definite integral by stochastically sampling its integrand. These samples can be averaged to make an improved estimate, and the progressive estimates form a sequence that converges to the integral value on the limit. Unfortunately, the sequence of Monte Carlo estimates converges at a rate of O(), where n denotes the sample count, effectively slowing down as more samples are drawn. To overcome this, we can apply sequence transformation, which transforms one converging sequence into another with the goal of accelerating the rate of convergence. However, analytically finding such a transformation for Monte Carlo estimates can be challenging, due to both the stochastic nature of the sequence, and the complexity of the integrand. In this paper, we propose to leverage neural networks to learn sequence transformations that improve the convergence of the progressive estimates of Monte Carlo integration. We demonstrate the effectiveness of our method on several canonical 1D integration problems as well as applications in light transport simulation.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.14407</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>CCS Concepts ; Computing methodologies → Machine learning algorithms ; Convergence ; Estimates ; Mathematics of computing → Numerical analysis ; Neural networks ; Probability and statistics ; Ray tracing ; Transformations</subject><ispartof>Computer graphics forum, 2021-10, Vol.40 (7), p.131-140</ispartof><rights>2021 The Author(s) Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.</rights><rights>2021 The Eurographics Association and John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3237-5449f35d02916a6302738da1eee559fb28ba2730a2acb148497337cb8143b1773</cites><orcidid>0000-0003-2185-5545 ; 0000-0002-3149-1442 ; 0000-0002-5706-8634 ; 0000-0001-8838-0455 ; 0000-0003-1251-970X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.14407$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.14407$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Mukherjee, Sabyasachi</creatorcontrib><creatorcontrib>Mukherjee, Sayan</creatorcontrib><creatorcontrib>Hua, Binh‐Son</creatorcontrib><creatorcontrib>Umetani, Nobuyuki</creatorcontrib><creatorcontrib>Meister, Daniel</creatorcontrib><title>Neural Sequence Transformation</title><title>Computer graphics forum</title><description>Monte Carlo integration is a technique for numerically estimating a definite integral by stochastically sampling its integrand. These samples can be averaged to make an improved estimate, and the progressive estimates form a sequence that converges to the integral value on the limit. Unfortunately, the sequence of Monte Carlo estimates converges at a rate of O(), where n denotes the sample count, effectively slowing down as more samples are drawn. To overcome this, we can apply sequence transformation, which transforms one converging sequence into another with the goal of accelerating the rate of convergence. However, analytically finding such a transformation for Monte Carlo estimates can be challenging, due to both the stochastic nature of the sequence, and the complexity of the integrand. In this paper, we propose to leverage neural networks to learn sequence transformations that improve the convergence of the progressive estimates of Monte Carlo integration. We demonstrate the effectiveness of our method on several canonical 1D integration problems as well as applications in light transport simulation.</description><subject>CCS Concepts</subject><subject>Computing methodologies → Machine learning algorithms</subject><subject>Convergence</subject><subject>Estimates</subject><subject>Mathematics of computing → Numerical analysis</subject><subject>Neural networks</subject><subject>Probability and statistics</subject><subject>Ray tracing</subject><subject>Transformations</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1j09LAzEQxYMouFYPfgEpePKw7eT_5iiLrULRg_UcsmkiW7abmnSRfvtG16tzmWH4zXvzELrFMMO55vbTzzBjIM9QgZmQZSW4OkcF4DxL4PwSXaW0BQAmBS_Q3asboumm7-5rcL1103U0ffIh7syhDf01uvCmS-7mr0_Qx-JpXT-Xq7flS_24Ki0lVJacMeUp3wBRWBhBgUhabQx2znGufEOqxuQVGGJsg1nFlKRU2qbCjDZYSjpB96PuPob8SDrobRhiny01EVmVKsJJph5GysaQUnRe72O7M_GoMeif-DrH17_xMzsf2e-2c8f_QV0vF-PFCV-bWKg</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Mukherjee, Sabyasachi</creator><creator>Mukherjee, Sayan</creator><creator>Hua, Binh‐Son</creator><creator>Umetani, Nobuyuki</creator><creator>Meister, Daniel</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2185-5545</orcidid><orcidid>https://orcid.org/0000-0002-3149-1442</orcidid><orcidid>https://orcid.org/0000-0002-5706-8634</orcidid><orcidid>https://orcid.org/0000-0001-8838-0455</orcidid><orcidid>https://orcid.org/0000-0003-1251-970X</orcidid></search><sort><creationdate>202110</creationdate><title>Neural Sequence Transformation</title><author>Mukherjee, Sabyasachi ; Mukherjee, Sayan ; Hua, Binh‐Son ; Umetani, Nobuyuki ; Meister, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3237-5449f35d02916a6302738da1eee559fb28ba2730a2acb148497337cb8143b1773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CCS Concepts</topic><topic>Computing methodologies → Machine learning algorithms</topic><topic>Convergence</topic><topic>Estimates</topic><topic>Mathematics of computing → Numerical analysis</topic><topic>Neural networks</topic><topic>Probability and statistics</topic><topic>Ray tracing</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukherjee, Sabyasachi</creatorcontrib><creatorcontrib>Mukherjee, Sayan</creatorcontrib><creatorcontrib>Hua, Binh‐Son</creatorcontrib><creatorcontrib>Umetani, Nobuyuki</creatorcontrib><creatorcontrib>Meister, Daniel</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukherjee, Sabyasachi</au><au>Mukherjee, Sayan</au><au>Hua, Binh‐Son</au><au>Umetani, Nobuyuki</au><au>Meister, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Sequence Transformation</atitle><jtitle>Computer graphics forum</jtitle><date>2021-10</date><risdate>2021</risdate><volume>40</volume><issue>7</issue><spage>131</spage><epage>140</epage><pages>131-140</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Monte Carlo integration is a technique for numerically estimating a definite integral by stochastically sampling its integrand. These samples can be averaged to make an improved estimate, and the progressive estimates form a sequence that converges to the integral value on the limit. Unfortunately, the sequence of Monte Carlo estimates converges at a rate of O(), where n denotes the sample count, effectively slowing down as more samples are drawn. To overcome this, we can apply sequence transformation, which transforms one converging sequence into another with the goal of accelerating the rate of convergence. However, analytically finding such a transformation for Monte Carlo estimates can be challenging, due to both the stochastic nature of the sequence, and the complexity of the integrand. In this paper, we propose to leverage neural networks to learn sequence transformations that improve the convergence of the progressive estimates of Monte Carlo integration. We demonstrate the effectiveness of our method on several canonical 1D integration problems as well as applications in light transport simulation.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.14407</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2185-5545</orcidid><orcidid>https://orcid.org/0000-0002-3149-1442</orcidid><orcidid>https://orcid.org/0000-0002-5706-8634</orcidid><orcidid>https://orcid.org/0000-0001-8838-0455</orcidid><orcidid>https://orcid.org/0000-0003-1251-970X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7055 |
ispartof | Computer graphics forum, 2021-10, Vol.40 (7), p.131-140 |
issn | 0167-7055 1467-8659 |
language | eng |
recordid | cdi_proquest_journals_2602939252 |
source | Business Source Complete; Wiley Online Library All Journals |
subjects | CCS Concepts Computing methodologies → Machine learning algorithms Convergence Estimates Mathematics of computing → Numerical analysis Neural networks Probability and statistics Ray tracing Transformations |
title | Neural Sequence Transformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Sequence%20Transformation&rft.jtitle=Computer%20graphics%20forum&rft.au=Mukherjee,%20Sabyasachi&rft.date=2021-10&rft.volume=40&rft.issue=7&rft.spage=131&rft.epage=140&rft.pages=131-140&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.14407&rft_dat=%3Cproquest_cross%3E2602939252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602939252&rft_id=info:pmid/&rfr_iscdi=true |