Multi‐lingual text detection and identification using agile convolutional neural network
Multi‐lingual scene text detection and identification is a challenging task in today's world due to the prevalence of many digitized multi‐lingual documents, images, and videos. A valuable method for detecting multi‐lingual text from natural scene images is proposed which uses the convolutional...
Gespeichert in:
Veröffentlicht in: | Computational intelligence 2021-11, Vol.37 (4), p.1803-1826 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1826 |
---|---|
container_issue | 4 |
container_start_page | 1803 |
container_title | Computational intelligence |
container_volume | 37 |
creator | Yegnaraman, Aparna Valli, S. |
description | Multi‐lingual scene text detection and identification is a challenging task in today's world due to the prevalence of many digitized multi‐lingual documents, images, and videos. A valuable method for detecting multi‐lingual text from natural scene images is proposed which uses the convolutional neural network, namely, You Only Look Once (YOLOv3) as the backbone. The proposed system is more agile than YOLOv3 with the introduction of atrous separable convolution (ASC). The multi‐scale prediction in YOLOv3 emphasizes the integration of global features of multi‐scale convolutional layers while it overlooks the blend of the multi‐scale local region features on the same convolutional layer. To overcome this, ASC is applied to efficiently compute dense local region feature maps, thereby reducing computation complexity substantially. Complete IoU loss, which is an accumulation of overlap area, distance, and aspect ratio, is introduced for enhanced accuracy in bounding box regression, wherein IoU designates the measure of overlap between the predicted and the ground truth bounding boxes. The experimental results show that the proposed system is efficacious in detecting multi‐lingual as well as English text from natural scene images. |
doi_str_mv | 10.1111/coin.12467 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2602899661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2602899661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3017-2c6a77939a7c6748033882e83527f52f59632ccab5bf4ec7bc18e9e8c50114a83</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsbn2DAnTA1f5NkllL8KVS70Y2bkKaZkjpOan6s3fkIPqNPYtpx7d0cOHzncu8B4BzBEcpzpZ3tRghTxg_AAGUpBaPwEAygwLTkNamOwUkIKwghIlQMwMtDaqP9-fpubbdMqi2i-YzFwkSjo3VdobpFYRemi7axWu2tFDJaqKVtTaFd9-HatPNztjPJ7yVunH89BUeNaoM5-9MheL69eRrfl9PZ3WR8PS01gYiXWDPF82W14ppxKiAhQmAjSIV5U-GmqhnBWqt5NW-o0XyukTC1EbqCCFElyBBc9HvX3r0nE6JcueTzPUFiBrGoa8ZQpi57SnsXgjeNXHv7pvxWIih33cldd3LfXYZRD2_yk9t_SDmeTR77zC-FRXNR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602899661</pqid></control><display><type>article</type><title>Multi‐lingual text detection and identification using agile convolutional neural network</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Yegnaraman, Aparna ; Valli, S.</creator><creatorcontrib>Yegnaraman, Aparna ; Valli, S.</creatorcontrib><description>Multi‐lingual scene text detection and identification is a challenging task in today's world due to the prevalence of many digitized multi‐lingual documents, images, and videos. A valuable method for detecting multi‐lingual text from natural scene images is proposed which uses the convolutional neural network, namely, You Only Look Once (YOLOv3) as the backbone. The proposed system is more agile than YOLOv3 with the introduction of atrous separable convolution (ASC). The multi‐scale prediction in YOLOv3 emphasizes the integration of global features of multi‐scale convolutional layers while it overlooks the blend of the multi‐scale local region features on the same convolutional layer. To overcome this, ASC is applied to efficiently compute dense local region feature maps, thereby reducing computation complexity substantially. Complete IoU loss, which is an accumulation of overlap area, distance, and aspect ratio, is introduced for enhanced accuracy in bounding box regression, wherein IoU designates the measure of overlap between the predicted and the ground truth bounding boxes. The experimental results show that the proposed system is efficacious in detecting multi‐lingual as well as English text from natural scene images.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/coin.12467</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Artificial neural networks ; Aspect ratio ; atrous separable convolution ; complete IoU loss ; Feature maps ; multi‐lingual text identification ; Neural networks ; non‐maximal suppression ; scene text detection ; You Only Look Once</subject><ispartof>Computational intelligence, 2021-11, Vol.37 (4), p.1803-1826</ispartof><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3017-2c6a77939a7c6748033882e83527f52f59632ccab5bf4ec7bc18e9e8c50114a83</citedby><cites>FETCH-LOGICAL-c3017-2c6a77939a7c6748033882e83527f52f59632ccab5bf4ec7bc18e9e8c50114a83</cites><orcidid>0000-0002-5759-7851</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcoin.12467$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcoin.12467$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yegnaraman, Aparna</creatorcontrib><creatorcontrib>Valli, S.</creatorcontrib><title>Multi‐lingual text detection and identification using agile convolutional neural network</title><title>Computational intelligence</title><description>Multi‐lingual scene text detection and identification is a challenging task in today's world due to the prevalence of many digitized multi‐lingual documents, images, and videos. A valuable method for detecting multi‐lingual text from natural scene images is proposed which uses the convolutional neural network, namely, You Only Look Once (YOLOv3) as the backbone. The proposed system is more agile than YOLOv3 with the introduction of atrous separable convolution (ASC). The multi‐scale prediction in YOLOv3 emphasizes the integration of global features of multi‐scale convolutional layers while it overlooks the blend of the multi‐scale local region features on the same convolutional layer. To overcome this, ASC is applied to efficiently compute dense local region feature maps, thereby reducing computation complexity substantially. Complete IoU loss, which is an accumulation of overlap area, distance, and aspect ratio, is introduced for enhanced accuracy in bounding box regression, wherein IoU designates the measure of overlap between the predicted and the ground truth bounding boxes. The experimental results show that the proposed system is efficacious in detecting multi‐lingual as well as English text from natural scene images.</description><subject>Artificial neural networks</subject><subject>Aspect ratio</subject><subject>atrous separable convolution</subject><subject>complete IoU loss</subject><subject>Feature maps</subject><subject>multi‐lingual text identification</subject><subject>Neural networks</subject><subject>non‐maximal suppression</subject><subject>scene text detection</subject><subject>You Only Look Once</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsbn2DAnTA1f5NkllL8KVS70Y2bkKaZkjpOan6s3fkIPqNPYtpx7d0cOHzncu8B4BzBEcpzpZ3tRghTxg_AAGUpBaPwEAygwLTkNamOwUkIKwghIlQMwMtDaqP9-fpubbdMqi2i-YzFwkSjo3VdobpFYRemi7axWu2tFDJaqKVtTaFd9-HatPNztjPJ7yVunH89BUeNaoM5-9MheL69eRrfl9PZ3WR8PS01gYiXWDPF82W14ppxKiAhQmAjSIV5U-GmqhnBWqt5NW-o0XyukTC1EbqCCFElyBBc9HvX3r0nE6JcueTzPUFiBrGoa8ZQpi57SnsXgjeNXHv7pvxWIih33cldd3LfXYZRD2_yk9t_SDmeTR77zC-FRXNR</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Yegnaraman, Aparna</creator><creator>Valli, S.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5759-7851</orcidid></search><sort><creationdate>202111</creationdate><title>Multi‐lingual text detection and identification using agile convolutional neural network</title><author>Yegnaraman, Aparna ; Valli, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3017-2c6a77939a7c6748033882e83527f52f59632ccab5bf4ec7bc18e9e8c50114a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Aspect ratio</topic><topic>atrous separable convolution</topic><topic>complete IoU loss</topic><topic>Feature maps</topic><topic>multi‐lingual text identification</topic><topic>Neural networks</topic><topic>non‐maximal suppression</topic><topic>scene text detection</topic><topic>You Only Look Once</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yegnaraman, Aparna</creatorcontrib><creatorcontrib>Valli, S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yegnaraman, Aparna</au><au>Valli, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐lingual text detection and identification using agile convolutional neural network</atitle><jtitle>Computational intelligence</jtitle><date>2021-11</date><risdate>2021</risdate><volume>37</volume><issue>4</issue><spage>1803</spage><epage>1826</epage><pages>1803-1826</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>Multi‐lingual scene text detection and identification is a challenging task in today's world due to the prevalence of many digitized multi‐lingual documents, images, and videos. A valuable method for detecting multi‐lingual text from natural scene images is proposed which uses the convolutional neural network, namely, You Only Look Once (YOLOv3) as the backbone. The proposed system is more agile than YOLOv3 with the introduction of atrous separable convolution (ASC). The multi‐scale prediction in YOLOv3 emphasizes the integration of global features of multi‐scale convolutional layers while it overlooks the blend of the multi‐scale local region features on the same convolutional layer. To overcome this, ASC is applied to efficiently compute dense local region feature maps, thereby reducing computation complexity substantially. Complete IoU loss, which is an accumulation of overlap area, distance, and aspect ratio, is introduced for enhanced accuracy in bounding box regression, wherein IoU designates the measure of overlap between the predicted and the ground truth bounding boxes. The experimental results show that the proposed system is efficacious in detecting multi‐lingual as well as English text from natural scene images.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/coin.12467</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-5759-7851</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0824-7935 |
ispartof | Computational intelligence, 2021-11, Vol.37 (4), p.1803-1826 |
issn | 0824-7935 1467-8640 |
language | eng |
recordid | cdi_proquest_journals_2602899661 |
source | EBSCOhost Business Source Complete; Access via Wiley Online Library |
subjects | Artificial neural networks Aspect ratio atrous separable convolution complete IoU loss Feature maps multi‐lingual text identification Neural networks non‐maximal suppression scene text detection You Only Look Once |
title | Multi‐lingual text detection and identification using agile convolutional neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T07%3A40%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90lingual%20text%20detection%20and%20identification%20using%20agile%20convolutional%20neural%20network&rft.jtitle=Computational%20intelligence&rft.au=Yegnaraman,%20Aparna&rft.date=2021-11&rft.volume=37&rft.issue=4&rft.spage=1803&rft.epage=1826&rft.pages=1803-1826&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/coin.12467&rft_dat=%3Cproquest_cross%3E2602899661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602899661&rft_id=info:pmid/&rfr_iscdi=true |