Time Series Prediction of Microseismic Multi-parameter Related to Rockburst Based on Deep Learning

Time series prediction refers to the learning of existing observed data of a parameter and predicting its future evolution. Based on the application of machine/deep learning methods in the field of engineering geology, it is desirable to predict the time series evolution of microseismic parameters i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rock mechanics and rock engineering 2021-12, Vol.54 (12), p.6299-6321
Hauptverfasser: Zhang, Hang, Zeng, Jun, Ma, Jiaji, Fang, Yong, Ma, Chunchi, Yao, Zhigang, Chen, Ziquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6321
container_issue 12
container_start_page 6299
container_title Rock mechanics and rock engineering
container_volume 54
creator Zhang, Hang
Zeng, Jun
Ma, Jiaji
Fang, Yong
Ma, Chunchi
Yao, Zhigang
Chen, Ziquan
description Time series prediction refers to the learning of existing observed data of a parameter and predicting its future evolution. Based on the application of machine/deep learning methods in the field of engineering geology, it is desirable to predict the time series evolution of microseismic parameters in the process of rockburst development. Our study explores key microseismic indices that help describe the development process of rockbursts based on abundant rockburst data obtained from deep underground engineering construction. The integrated process of dynamic moving-window method and improved convolutional neural network (CNN) realizes the evolution prediction of multiple microseismic parameters or their different combinations, and the modified model structures of a univariate, multivariate input and a single-step, multi-step output are established. Various models of the multiple microseismic parameters for the CNN-based time series prediction are innovated, including a univariate prediction model, a multiple parallel series model, a multiple input series model, and a multivariate multi-step prediction model. Model training, testing, and interpretation of the rockburst risk and comparative analyses of the different models are performed for the complete process of multiple rockbursts. The results show that the proposed models can well predict the evolution trends in the various key characteristics during rockbursts. The predicted trend of multiple microseismic parameters provides time labels for rockburst prediction and risk judgement, which is conducive to rockburst early warning. This study provides a new research idea for the prediction and early warning of rockbursts in the field of deep underground and mining engineering.
doi_str_mv 10.1007/s00603-021-02614-9
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2602863936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2602863936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1586e02f41b4bb673410797aad0e964f2bfb3f6451d75d9c3268b7c3e739be723</originalsourceid><addsrcrecordid>eNqNkE1vEzEQhi1EJULhD_RkqUe0dPwRe_cI4aOVUoFKKvVm2d7ZyG2yDrZXqP8ep1vBDXEYW_K8z3jel5AzBu8ZgL7IAApEA5zVUkw23QuyYFLIRi7F3UuyAM1Fw5Xgr8jrnO8BalO3C-I2YY_0B6aAmX5P2AdfQhxpHOh18ClmDHkfPL2ediU0B5vsHgsmeoM7W7CnJdKb6B_clHKhH22uT5X-hHiga7RpDOP2DTkZ7C7j2-f7lNx--bxZXTbrb1-vVh_WjResKw1btgqBD5I56ZzSQjLQnba2B-yUHLgbnBiUXLJeL_vOC65ap71ALTqH1d4pOZ_nHlL8OWEu5j5OaaxfGq6At0p0QlUVn1VHcznhYA4p7G16NAzMMUszZ2lqluYpS9NVqJ2hX-jikH3A0eMfECrQ6nrKWsBWodhjhqs4jaWi7_4frWoxq3NVjFtMfz38Y73f8ZqXOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602863936</pqid></control><display><type>article</type><title>Time Series Prediction of Microseismic Multi-parameter Related to Rockburst Based on Deep Learning</title><source>SpringerNature Journals</source><creator>Zhang, Hang ; Zeng, Jun ; Ma, Jiaji ; Fang, Yong ; Ma, Chunchi ; Yao, Zhigang ; Chen, Ziquan</creator><creatorcontrib>Zhang, Hang ; Zeng, Jun ; Ma, Jiaji ; Fang, Yong ; Ma, Chunchi ; Yao, Zhigang ; Chen, Ziquan</creatorcontrib><description>Time series prediction refers to the learning of existing observed data of a parameter and predicting its future evolution. Based on the application of machine/deep learning methods in the field of engineering geology, it is desirable to predict the time series evolution of microseismic parameters in the process of rockburst development. Our study explores key microseismic indices that help describe the development process of rockbursts based on abundant rockburst data obtained from deep underground engineering construction. The integrated process of dynamic moving-window method and improved convolutional neural network (CNN) realizes the evolution prediction of multiple microseismic parameters or their different combinations, and the modified model structures of a univariate, multivariate input and a single-step, multi-step output are established. Various models of the multiple microseismic parameters for the CNN-based time series prediction are innovated, including a univariate prediction model, a multiple parallel series model, a multiple input series model, and a multivariate multi-step prediction model. Model training, testing, and interpretation of the rockburst risk and comparative analyses of the different models are performed for the complete process of multiple rockbursts. The results show that the proposed models can well predict the evolution trends in the various key characteristics during rockbursts. The predicted trend of multiple microseismic parameters provides time labels for rockburst prediction and risk judgement, which is conducive to rockburst early warning. This study provides a new research idea for the prediction and early warning of rockbursts in the field of deep underground and mining engineering.</description><identifier>ISSN: 0723-2632</identifier><identifier>EISSN: 1434-453X</identifier><identifier>DOI: 10.1007/s00603-021-02614-9</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Artificial neural networks ; Civil Engineering ; Comparative analysis ; Deep learning ; Earth and Environmental Science ; Earth Sciences ; Engineering ; Engineering geology ; Engineering, Geological ; Evolution ; Geology ; Geophysics/Geodesy ; Geosciences, Multidisciplinary ; Learning algorithms ; Mathematical models ; Microseisms ; Mining engineering ; Multivariate analysis ; Neural networks ; Observational learning ; Original Paper ; Parameter modification ; Parameters ; Physical Sciences ; Prediction models ; Predictions ; Process parameters ; Risk analysis ; Rockbursts ; Science &amp; Technology ; Technology ; Time series ; Training ; Underground construction ; Underground mining</subject><ispartof>Rock mechanics and rock engineering, 2021-12, Vol.54 (12), p.6299-6321</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>26</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000687000400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-1586e02f41b4bb673410797aad0e964f2bfb3f6451d75d9c3268b7c3e739be723</citedby><cites>FETCH-LOGICAL-c319t-1586e02f41b4bb673410797aad0e964f2bfb3f6451d75d9c3268b7c3e739be723</cites><orcidid>0000-0002-2367-170X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00603-021-02614-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00603-021-02614-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Zeng, Jun</creatorcontrib><creatorcontrib>Ma, Jiaji</creatorcontrib><creatorcontrib>Fang, Yong</creatorcontrib><creatorcontrib>Ma, Chunchi</creatorcontrib><creatorcontrib>Yao, Zhigang</creatorcontrib><creatorcontrib>Chen, Ziquan</creatorcontrib><title>Time Series Prediction of Microseismic Multi-parameter Related to Rockburst Based on Deep Learning</title><title>Rock mechanics and rock engineering</title><addtitle>Rock Mech Rock Eng</addtitle><addtitle>ROCK MECH ROCK ENG</addtitle><description>Time series prediction refers to the learning of existing observed data of a parameter and predicting its future evolution. Based on the application of machine/deep learning methods in the field of engineering geology, it is desirable to predict the time series evolution of microseismic parameters in the process of rockburst development. Our study explores key microseismic indices that help describe the development process of rockbursts based on abundant rockburst data obtained from deep underground engineering construction. The integrated process of dynamic moving-window method and improved convolutional neural network (CNN) realizes the evolution prediction of multiple microseismic parameters or their different combinations, and the modified model structures of a univariate, multivariate input and a single-step, multi-step output are established. Various models of the multiple microseismic parameters for the CNN-based time series prediction are innovated, including a univariate prediction model, a multiple parallel series model, a multiple input series model, and a multivariate multi-step prediction model. Model training, testing, and interpretation of the rockburst risk and comparative analyses of the different models are performed for the complete process of multiple rockbursts. The results show that the proposed models can well predict the evolution trends in the various key characteristics during rockbursts. The predicted trend of multiple microseismic parameters provides time labels for rockburst prediction and risk judgement, which is conducive to rockburst early warning. This study provides a new research idea for the prediction and early warning of rockbursts in the field of deep underground and mining engineering.</description><subject>Artificial neural networks</subject><subject>Civil Engineering</subject><subject>Comparative analysis</subject><subject>Deep learning</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Engineering geology</subject><subject>Engineering, Geological</subject><subject>Evolution</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Geosciences, Multidisciplinary</subject><subject>Learning algorithms</subject><subject>Mathematical models</subject><subject>Microseisms</subject><subject>Mining engineering</subject><subject>Multivariate analysis</subject><subject>Neural networks</subject><subject>Observational learning</subject><subject>Original Paper</subject><subject>Parameter modification</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Process parameters</subject><subject>Risk analysis</subject><subject>Rockbursts</subject><subject>Science &amp; Technology</subject><subject>Technology</subject><subject>Time series</subject><subject>Training</subject><subject>Underground construction</subject><subject>Underground mining</subject><issn>0723-2632</issn><issn>1434-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkE1vEzEQhi1EJULhD_RkqUe0dPwRe_cI4aOVUoFKKvVm2d7ZyG2yDrZXqP8ep1vBDXEYW_K8z3jel5AzBu8ZgL7IAApEA5zVUkw23QuyYFLIRi7F3UuyAM1Fw5Xgr8jrnO8BalO3C-I2YY_0B6aAmX5P2AdfQhxpHOh18ClmDHkfPL2ediU0B5vsHgsmeoM7W7CnJdKb6B_clHKhH22uT5X-hHiga7RpDOP2DTkZ7C7j2-f7lNx--bxZXTbrb1-vVh_WjResKw1btgqBD5I56ZzSQjLQnba2B-yUHLgbnBiUXLJeL_vOC65ap71ALTqH1d4pOZ_nHlL8OWEu5j5OaaxfGq6At0p0QlUVn1VHcznhYA4p7G16NAzMMUszZ2lqluYpS9NVqJ2hX-jikH3A0eMfECrQ6nrKWsBWodhjhqs4jaWi7_4frWoxq3NVjFtMfz38Y73f8ZqXOw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Zhang, Hang</creator><creator>Zeng, Jun</creator><creator>Ma, Jiaji</creator><creator>Fang, Yong</creator><creator>Ma, Chunchi</creator><creator>Yao, Zhigang</creator><creator>Chen, Ziquan</creator><general>Springer Vienna</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2367-170X</orcidid></search><sort><creationdate>20211201</creationdate><title>Time Series Prediction of Microseismic Multi-parameter Related to Rockburst Based on Deep Learning</title><author>Zhang, Hang ; Zeng, Jun ; Ma, Jiaji ; Fang, Yong ; Ma, Chunchi ; Yao, Zhigang ; Chen, Ziquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1586e02f41b4bb673410797aad0e964f2bfb3f6451d75d9c3268b7c3e739be723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Civil Engineering</topic><topic>Comparative analysis</topic><topic>Deep learning</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Engineering geology</topic><topic>Engineering, Geological</topic><topic>Evolution</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Geosciences, Multidisciplinary</topic><topic>Learning algorithms</topic><topic>Mathematical models</topic><topic>Microseisms</topic><topic>Mining engineering</topic><topic>Multivariate analysis</topic><topic>Neural networks</topic><topic>Observational learning</topic><topic>Original Paper</topic><topic>Parameter modification</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Process parameters</topic><topic>Risk analysis</topic><topic>Rockbursts</topic><topic>Science &amp; Technology</topic><topic>Technology</topic><topic>Time series</topic><topic>Training</topic><topic>Underground construction</topic><topic>Underground mining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Zeng, Jun</creatorcontrib><creatorcontrib>Ma, Jiaji</creatorcontrib><creatorcontrib>Fang, Yong</creatorcontrib><creatorcontrib>Ma, Chunchi</creatorcontrib><creatorcontrib>Yao, Zhigang</creatorcontrib><creatorcontrib>Chen, Ziquan</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Rock mechanics and rock engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hang</au><au>Zeng, Jun</au><au>Ma, Jiaji</au><au>Fang, Yong</au><au>Ma, Chunchi</au><au>Yao, Zhigang</au><au>Chen, Ziquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Series Prediction of Microseismic Multi-parameter Related to Rockburst Based on Deep Learning</atitle><jtitle>Rock mechanics and rock engineering</jtitle><stitle>Rock Mech Rock Eng</stitle><stitle>ROCK MECH ROCK ENG</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>54</volume><issue>12</issue><spage>6299</spage><epage>6321</epage><pages>6299-6321</pages><issn>0723-2632</issn><eissn>1434-453X</eissn><abstract>Time series prediction refers to the learning of existing observed data of a parameter and predicting its future evolution. Based on the application of machine/deep learning methods in the field of engineering geology, it is desirable to predict the time series evolution of microseismic parameters in the process of rockburst development. Our study explores key microseismic indices that help describe the development process of rockbursts based on abundant rockburst data obtained from deep underground engineering construction. The integrated process of dynamic moving-window method and improved convolutional neural network (CNN) realizes the evolution prediction of multiple microseismic parameters or their different combinations, and the modified model structures of a univariate, multivariate input and a single-step, multi-step output are established. Various models of the multiple microseismic parameters for the CNN-based time series prediction are innovated, including a univariate prediction model, a multiple parallel series model, a multiple input series model, and a multivariate multi-step prediction model. Model training, testing, and interpretation of the rockburst risk and comparative analyses of the different models are performed for the complete process of multiple rockbursts. The results show that the proposed models can well predict the evolution trends in the various key characteristics during rockbursts. The predicted trend of multiple microseismic parameters provides time labels for rockburst prediction and risk judgement, which is conducive to rockburst early warning. This study provides a new research idea for the prediction and early warning of rockbursts in the field of deep underground and mining engineering.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00603-021-02614-9</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-2367-170X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0723-2632
ispartof Rock mechanics and rock engineering, 2021-12, Vol.54 (12), p.6299-6321
issn 0723-2632
1434-453X
language eng
recordid cdi_proquest_journals_2602863936
source SpringerNature Journals
subjects Artificial neural networks
Civil Engineering
Comparative analysis
Deep learning
Earth and Environmental Science
Earth Sciences
Engineering
Engineering geology
Engineering, Geological
Evolution
Geology
Geophysics/Geodesy
Geosciences, Multidisciplinary
Learning algorithms
Mathematical models
Microseisms
Mining engineering
Multivariate analysis
Neural networks
Observational learning
Original Paper
Parameter modification
Parameters
Physical Sciences
Prediction models
Predictions
Process parameters
Risk analysis
Rockbursts
Science & Technology
Technology
Time series
Training
Underground construction
Underground mining
title Time Series Prediction of Microseismic Multi-parameter Related to Rockburst Based on Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Series%20Prediction%20of%20Microseismic%20Multi-parameter%20Related%20to%20Rockburst%20Based%20on%20Deep%20Learning&rft.jtitle=Rock%20mechanics%20and%20rock%20engineering&rft.au=Zhang,%20Hang&rft.date=2021-12-01&rft.volume=54&rft.issue=12&rft.spage=6299&rft.epage=6321&rft.pages=6299-6321&rft.issn=0723-2632&rft.eissn=1434-453X&rft_id=info:doi/10.1007/s00603-021-02614-9&rft_dat=%3Cproquest_sprin%3E2602863936%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602863936&rft_id=info:pmid/&rfr_iscdi=true