Time Series Prediction of Microseismic Multi-parameter Related to Rockburst Based on Deep Learning
Time series prediction refers to the learning of existing observed data of a parameter and predicting its future evolution. Based on the application of machine/deep learning methods in the field of engineering geology, it is desirable to predict the time series evolution of microseismic parameters i...
Gespeichert in:
Veröffentlicht in: | Rock mechanics and rock engineering 2021-12, Vol.54 (12), p.6299-6321 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6321 |
---|---|
container_issue | 12 |
container_start_page | 6299 |
container_title | Rock mechanics and rock engineering |
container_volume | 54 |
creator | Zhang, Hang Zeng, Jun Ma, Jiaji Fang, Yong Ma, Chunchi Yao, Zhigang Chen, Ziquan |
description | Time series prediction refers to the learning of existing observed data of a parameter and predicting its future evolution. Based on the application of machine/deep learning methods in the field of engineering geology, it is desirable to predict the time series evolution of microseismic parameters in the process of rockburst development. Our study explores key microseismic indices that help describe the development process of rockbursts based on abundant rockburst data obtained from deep underground engineering construction. The integrated process of dynamic moving-window method and improved convolutional neural network (CNN) realizes the evolution prediction of multiple microseismic parameters or their different combinations, and the modified model structures of a univariate, multivariate input and a single-step, multi-step output are established. Various models of the multiple microseismic parameters for the CNN-based time series prediction are innovated, including a univariate prediction model, a multiple parallel series model, a multiple input series model, and a multivariate multi-step prediction model. Model training, testing, and interpretation of the rockburst risk and comparative analyses of the different models are performed for the complete process of multiple rockbursts. The results show that the proposed models can well predict the evolution trends in the various key characteristics during rockbursts. The predicted trend of multiple microseismic parameters provides time labels for rockburst prediction and risk judgement, which is conducive to rockburst early warning. This study provides a new research idea for the prediction and early warning of rockbursts in the field of deep underground and mining engineering. |
doi_str_mv | 10.1007/s00603-021-02614-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2602863936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2602863936</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-1586e02f41b4bb673410797aad0e964f2bfb3f6451d75d9c3268b7c3e739be723</originalsourceid><addsrcrecordid>eNqNkE1vEzEQhi1EJULhD_RkqUe0dPwRe_cI4aOVUoFKKvVm2d7ZyG2yDrZXqP8ep1vBDXEYW_K8z3jel5AzBu8ZgL7IAApEA5zVUkw23QuyYFLIRi7F3UuyAM1Fw5Xgr8jrnO8BalO3C-I2YY_0B6aAmX5P2AdfQhxpHOh18ClmDHkfPL2ediU0B5vsHgsmeoM7W7CnJdKb6B_clHKhH22uT5X-hHiga7RpDOP2DTkZ7C7j2-f7lNx--bxZXTbrb1-vVh_WjResKw1btgqBD5I56ZzSQjLQnba2B-yUHLgbnBiUXLJeL_vOC65ap71ALTqH1d4pOZ_nHlL8OWEu5j5OaaxfGq6At0p0QlUVn1VHcznhYA4p7G16NAzMMUszZ2lqluYpS9NVqJ2hX-jikH3A0eMfECrQ6nrKWsBWodhjhqs4jaWi7_4frWoxq3NVjFtMfz38Y73f8ZqXOw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602863936</pqid></control><display><type>article</type><title>Time Series Prediction of Microseismic Multi-parameter Related to Rockburst Based on Deep Learning</title><source>SpringerNature Journals</source><creator>Zhang, Hang ; Zeng, Jun ; Ma, Jiaji ; Fang, Yong ; Ma, Chunchi ; Yao, Zhigang ; Chen, Ziquan</creator><creatorcontrib>Zhang, Hang ; Zeng, Jun ; Ma, Jiaji ; Fang, Yong ; Ma, Chunchi ; Yao, Zhigang ; Chen, Ziquan</creatorcontrib><description>Time series prediction refers to the learning of existing observed data of a parameter and predicting its future evolution. Based on the application of machine/deep learning methods in the field of engineering geology, it is desirable to predict the time series evolution of microseismic parameters in the process of rockburst development. Our study explores key microseismic indices that help describe the development process of rockbursts based on abundant rockburst data obtained from deep underground engineering construction. The integrated process of dynamic moving-window method and improved convolutional neural network (CNN) realizes the evolution prediction of multiple microseismic parameters or their different combinations, and the modified model structures of a univariate, multivariate input and a single-step, multi-step output are established. Various models of the multiple microseismic parameters for the CNN-based time series prediction are innovated, including a univariate prediction model, a multiple parallel series model, a multiple input series model, and a multivariate multi-step prediction model. Model training, testing, and interpretation of the rockburst risk and comparative analyses of the different models are performed for the complete process of multiple rockbursts. The results show that the proposed models can well predict the evolution trends in the various key characteristics during rockbursts. The predicted trend of multiple microseismic parameters provides time labels for rockburst prediction and risk judgement, which is conducive to rockburst early warning. This study provides a new research idea for the prediction and early warning of rockbursts in the field of deep underground and mining engineering.</description><identifier>ISSN: 0723-2632</identifier><identifier>EISSN: 1434-453X</identifier><identifier>DOI: 10.1007/s00603-021-02614-9</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Artificial neural networks ; Civil Engineering ; Comparative analysis ; Deep learning ; Earth and Environmental Science ; Earth Sciences ; Engineering ; Engineering geology ; Engineering, Geological ; Evolution ; Geology ; Geophysics/Geodesy ; Geosciences, Multidisciplinary ; Learning algorithms ; Mathematical models ; Microseisms ; Mining engineering ; Multivariate analysis ; Neural networks ; Observational learning ; Original Paper ; Parameter modification ; Parameters ; Physical Sciences ; Prediction models ; Predictions ; Process parameters ; Risk analysis ; Rockbursts ; Science & Technology ; Technology ; Time series ; Training ; Underground construction ; Underground mining</subject><ispartof>Rock mechanics and rock engineering, 2021-12, Vol.54 (12), p.6299-6321</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>26</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000687000400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c319t-1586e02f41b4bb673410797aad0e964f2bfb3f6451d75d9c3268b7c3e739be723</citedby><cites>FETCH-LOGICAL-c319t-1586e02f41b4bb673410797aad0e964f2bfb3f6451d75d9c3268b7c3e739be723</cites><orcidid>0000-0002-2367-170X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00603-021-02614-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00603-021-02614-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Zeng, Jun</creatorcontrib><creatorcontrib>Ma, Jiaji</creatorcontrib><creatorcontrib>Fang, Yong</creatorcontrib><creatorcontrib>Ma, Chunchi</creatorcontrib><creatorcontrib>Yao, Zhigang</creatorcontrib><creatorcontrib>Chen, Ziquan</creatorcontrib><title>Time Series Prediction of Microseismic Multi-parameter Related to Rockburst Based on Deep Learning</title><title>Rock mechanics and rock engineering</title><addtitle>Rock Mech Rock Eng</addtitle><addtitle>ROCK MECH ROCK ENG</addtitle><description>Time series prediction refers to the learning of existing observed data of a parameter and predicting its future evolution. Based on the application of machine/deep learning methods in the field of engineering geology, it is desirable to predict the time series evolution of microseismic parameters in the process of rockburst development. Our study explores key microseismic indices that help describe the development process of rockbursts based on abundant rockburst data obtained from deep underground engineering construction. The integrated process of dynamic moving-window method and improved convolutional neural network (CNN) realizes the evolution prediction of multiple microseismic parameters or their different combinations, and the modified model structures of a univariate, multivariate input and a single-step, multi-step output are established. Various models of the multiple microseismic parameters for the CNN-based time series prediction are innovated, including a univariate prediction model, a multiple parallel series model, a multiple input series model, and a multivariate multi-step prediction model. Model training, testing, and interpretation of the rockburst risk and comparative analyses of the different models are performed for the complete process of multiple rockbursts. The results show that the proposed models can well predict the evolution trends in the various key characteristics during rockbursts. The predicted trend of multiple microseismic parameters provides time labels for rockburst prediction and risk judgement, which is conducive to rockburst early warning. This study provides a new research idea for the prediction and early warning of rockbursts in the field of deep underground and mining engineering.</description><subject>Artificial neural networks</subject><subject>Civil Engineering</subject><subject>Comparative analysis</subject><subject>Deep learning</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Engineering geology</subject><subject>Engineering, Geological</subject><subject>Evolution</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Geosciences, Multidisciplinary</subject><subject>Learning algorithms</subject><subject>Mathematical models</subject><subject>Microseisms</subject><subject>Mining engineering</subject><subject>Multivariate analysis</subject><subject>Neural networks</subject><subject>Observational learning</subject><subject>Original Paper</subject><subject>Parameter modification</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Prediction models</subject><subject>Predictions</subject><subject>Process parameters</subject><subject>Risk analysis</subject><subject>Rockbursts</subject><subject>Science & Technology</subject><subject>Technology</subject><subject>Time series</subject><subject>Training</subject><subject>Underground construction</subject><subject>Underground mining</subject><issn>0723-2632</issn><issn>1434-453X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkE1vEzEQhi1EJULhD_RkqUe0dPwRe_cI4aOVUoFKKvVm2d7ZyG2yDrZXqP8ep1vBDXEYW_K8z3jel5AzBu8ZgL7IAApEA5zVUkw23QuyYFLIRi7F3UuyAM1Fw5Xgr8jrnO8BalO3C-I2YY_0B6aAmX5P2AdfQhxpHOh18ClmDHkfPL2ediU0B5vsHgsmeoM7W7CnJdKb6B_clHKhH22uT5X-hHiga7RpDOP2DTkZ7C7j2-f7lNx--bxZXTbrb1-vVh_WjResKw1btgqBD5I56ZzSQjLQnba2B-yUHLgbnBiUXLJeL_vOC65ap71ALTqH1d4pOZ_nHlL8OWEu5j5OaaxfGq6At0p0QlUVn1VHcznhYA4p7G16NAzMMUszZ2lqluYpS9NVqJ2hX-jikH3A0eMfECrQ6nrKWsBWodhjhqs4jaWi7_4frWoxq3NVjFtMfz38Y73f8ZqXOw</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Zhang, Hang</creator><creator>Zeng, Jun</creator><creator>Ma, Jiaji</creator><creator>Fang, Yong</creator><creator>Ma, Chunchi</creator><creator>Yao, Zhigang</creator><creator>Chen, Ziquan</creator><general>Springer Vienna</general><general>Springer Nature</general><general>Springer Nature B.V</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-2367-170X</orcidid></search><sort><creationdate>20211201</creationdate><title>Time Series Prediction of Microseismic Multi-parameter Related to Rockburst Based on Deep Learning</title><author>Zhang, Hang ; Zeng, Jun ; Ma, Jiaji ; Fang, Yong ; Ma, Chunchi ; Yao, Zhigang ; Chen, Ziquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-1586e02f41b4bb673410797aad0e964f2bfb3f6451d75d9c3268b7c3e739be723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Civil Engineering</topic><topic>Comparative analysis</topic><topic>Deep learning</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Engineering geology</topic><topic>Engineering, Geological</topic><topic>Evolution</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Geosciences, Multidisciplinary</topic><topic>Learning algorithms</topic><topic>Mathematical models</topic><topic>Microseisms</topic><topic>Mining engineering</topic><topic>Multivariate analysis</topic><topic>Neural networks</topic><topic>Observational learning</topic><topic>Original Paper</topic><topic>Parameter modification</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Prediction models</topic><topic>Predictions</topic><topic>Process parameters</topic><topic>Risk analysis</topic><topic>Rockbursts</topic><topic>Science & Technology</topic><topic>Technology</topic><topic>Time series</topic><topic>Training</topic><topic>Underground construction</topic><topic>Underground mining</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hang</creatorcontrib><creatorcontrib>Zeng, Jun</creatorcontrib><creatorcontrib>Ma, Jiaji</creatorcontrib><creatorcontrib>Fang, Yong</creatorcontrib><creatorcontrib>Ma, Chunchi</creatorcontrib><creatorcontrib>Yao, Zhigang</creatorcontrib><creatorcontrib>Chen, Ziquan</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Rock mechanics and rock engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hang</au><au>Zeng, Jun</au><au>Ma, Jiaji</au><au>Fang, Yong</au><au>Ma, Chunchi</au><au>Yao, Zhigang</au><au>Chen, Ziquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Series Prediction of Microseismic Multi-parameter Related to Rockburst Based on Deep Learning</atitle><jtitle>Rock mechanics and rock engineering</jtitle><stitle>Rock Mech Rock Eng</stitle><stitle>ROCK MECH ROCK ENG</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>54</volume><issue>12</issue><spage>6299</spage><epage>6321</epage><pages>6299-6321</pages><issn>0723-2632</issn><eissn>1434-453X</eissn><abstract>Time series prediction refers to the learning of existing observed data of a parameter and predicting its future evolution. Based on the application of machine/deep learning methods in the field of engineering geology, it is desirable to predict the time series evolution of microseismic parameters in the process of rockburst development. Our study explores key microseismic indices that help describe the development process of rockbursts based on abundant rockburst data obtained from deep underground engineering construction. The integrated process of dynamic moving-window method and improved convolutional neural network (CNN) realizes the evolution prediction of multiple microseismic parameters or their different combinations, and the modified model structures of a univariate, multivariate input and a single-step, multi-step output are established. Various models of the multiple microseismic parameters for the CNN-based time series prediction are innovated, including a univariate prediction model, a multiple parallel series model, a multiple input series model, and a multivariate multi-step prediction model. Model training, testing, and interpretation of the rockburst risk and comparative analyses of the different models are performed for the complete process of multiple rockbursts. The results show that the proposed models can well predict the evolution trends in the various key characteristics during rockbursts. The predicted trend of multiple microseismic parameters provides time labels for rockburst prediction and risk judgement, which is conducive to rockburst early warning. This study provides a new research idea for the prediction and early warning of rockbursts in the field of deep underground and mining engineering.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00603-021-02614-9</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-2367-170X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0723-2632 |
ispartof | Rock mechanics and rock engineering, 2021-12, Vol.54 (12), p.6299-6321 |
issn | 0723-2632 1434-453X |
language | eng |
recordid | cdi_proquest_journals_2602863936 |
source | SpringerNature Journals |
subjects | Artificial neural networks Civil Engineering Comparative analysis Deep learning Earth and Environmental Science Earth Sciences Engineering Engineering geology Engineering, Geological Evolution Geology Geophysics/Geodesy Geosciences, Multidisciplinary Learning algorithms Mathematical models Microseisms Mining engineering Multivariate analysis Neural networks Observational learning Original Paper Parameter modification Parameters Physical Sciences Prediction models Predictions Process parameters Risk analysis Rockbursts Science & Technology Technology Time series Training Underground construction Underground mining |
title | Time Series Prediction of Microseismic Multi-parameter Related to Rockburst Based on Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T07%3A02%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Series%20Prediction%20of%20Microseismic%20Multi-parameter%20Related%20to%20Rockburst%20Based%20on%20Deep%20Learning&rft.jtitle=Rock%20mechanics%20and%20rock%20engineering&rft.au=Zhang,%20Hang&rft.date=2021-12-01&rft.volume=54&rft.issue=12&rft.spage=6299&rft.epage=6321&rft.pages=6299-6321&rft.issn=0723-2632&rft.eissn=1434-453X&rft_id=info:doi/10.1007/s00603-021-02614-9&rft_dat=%3Cproquest_sprin%3E2602863936%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602863936&rft_id=info:pmid/&rfr_iscdi=true |