Global co‐occurrence of methanogenic archaea and methanotrophic bacteria in Microcystis aggregates

Summary Global warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane‐metabolizing microorganisms may be important for modulating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental microbiology 2021-11, Vol.23 (11), p.6503-6519
Hauptverfasser: Li, Chuang, Hambright, K. David, Bowen, Hannah G., Trammell, Majoi A., Grossart, Hans‐Peter, Burford, Michele A., Hamilton, David P., Jiang, Helong, Latour, Delphine, Meyer, Elisabeth I., Padisák, Judit, Zamor, Richard M., Krumholz, Lee R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6519
container_issue 11
container_start_page 6503
container_title Environmental microbiology
container_volume 23
creator Li, Chuang
Hambright, K. David
Bowen, Hannah G.
Trammell, Majoi A.
Grossart, Hans‐Peter
Burford, Michele A.
Hamilton, David P.
Jiang, Helong
Latour, Delphine
Meyer, Elisabeth I.
Padisák, Judit
Zamor, Richard M.
Krumholz, Lee R.
description Summary Global warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane‐metabolizing microorganisms may be important for modulating carbon flow in cyanobacterial blooms. Here, we surveyed methanogenic and methanotrophic communities associated with floating Microcystis aggregates in 10 lakes spanning four continents, through sequencing of 16S rRNA and functional marker genes. Methanogenic archaea (mainly Methanoregula and Methanosaeta) were detectable in 5 of the 10 lakes and constituted the majority (~50%–90%) of the archaeal community in these lakes. Three of the 10 lakes contained relatively more abundant methanotrophs than the other seven lakes, with the methanotrophic genera Methyloparacoccus, Crenothrix, and an uncultured species related to Methylobacter dominating and nearly exclusively found in each of those three lakes. These three are among the five lakes in which methanogens were observed. Operational taxonomic unit (OTU) richness and abundance of methanotrophs were strongly positively correlated with those of methanogens, suggesting that their activities may be coupled. These Microcystis‐aggregate‐associated methanotrophs may be responsible for a hitherto overlooked sink for methane in surface freshwaters, and their co‐occurrence with methanogens sheds light on the methane cycle in cyanobacterial aggregates.
doi_str_mv 10.1111/1462-2920.15691
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2602468457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2602468457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4371-6220c44cbb2467d0cef7375750f91283f45f86ebe24271493ec559b9a6080cc53</originalsourceid><addsrcrecordid>eNqFkE9PwyAYh4nROJ2evRkSz3VAoaxHs8y5ZIsXPRNK33ZdujKhjdnNj-Bn9JPI7LarXPjzPvx4eRC6o-SRhjGiPGERS1nYiiSlZ-jqdHJ-WlM2QNferwmhMpbkEg1iHjMpU3aF8lltM11jY3--vq0xnXPQGMC2wBtoV7qxJTSVwdqZlQaNdZMfC62z21UoZdq04CqNqwYvK-Os2fm28liXpYNSt-Bv0EWhaw-3h3mI3p-nb5OXaPE6m0-eFpHhsaRRwhgxnJssYzyROTFQhH6FFKQIfxjHBRfFOIEMGGeS8jQGI0SapTohY2KMiIfooc_dOvvRgW_V2nauCU8qlpAQOuZCBmrUU6FV7x0UauuqjXY7RYnaW1V7b2rvUP1ZDTfuD7ldtoH8xB81BkD0wGdVw-6_PDVdzvvgXzxQgjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602468457</pqid></control><display><type>article</type><title>Global co‐occurrence of methanogenic archaea and methanotrophic bacteria in Microcystis aggregates</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Chuang ; Hambright, K. David ; Bowen, Hannah G. ; Trammell, Majoi A. ; Grossart, Hans‐Peter ; Burford, Michele A. ; Hamilton, David P. ; Jiang, Helong ; Latour, Delphine ; Meyer, Elisabeth I. ; Padisák, Judit ; Zamor, Richard M. ; Krumholz, Lee R.</creator><creatorcontrib>Li, Chuang ; Hambright, K. David ; Bowen, Hannah G. ; Trammell, Majoi A. ; Grossart, Hans‐Peter ; Burford, Michele A. ; Hamilton, David P. ; Jiang, Helong ; Latour, Delphine ; Meyer, Elisabeth I. ; Padisák, Judit ; Zamor, Richard M. ; Krumholz, Lee R.</creatorcontrib><description>Summary Global warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane‐metabolizing microorganisms may be important for modulating carbon flow in cyanobacterial blooms. Here, we surveyed methanogenic and methanotrophic communities associated with floating Microcystis aggregates in 10 lakes spanning four continents, through sequencing of 16S rRNA and functional marker genes. Methanogenic archaea (mainly Methanoregula and Methanosaeta) were detectable in 5 of the 10 lakes and constituted the majority (~50%–90%) of the archaeal community in these lakes. Three of the 10 lakes contained relatively more abundant methanotrophs than the other seven lakes, with the methanotrophic genera Methyloparacoccus, Crenothrix, and an uncultured species related to Methylobacter dominating and nearly exclusively found in each of those three lakes. These three are among the five lakes in which methanogens were observed. Operational taxonomic unit (OTU) richness and abundance of methanotrophs were strongly positively correlated with those of methanogens, suggesting that their activities may be coupled. These Microcystis‐aggregate‐associated methanotrophs may be responsible for a hitherto overlooked sink for methane in surface freshwaters, and their co‐occurrence with methanogens sheds light on the methane cycle in cyanobacterial aggregates.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.15691</identifier><identifier>PMID: 34327792</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Aggregates ; Archaea ; Archaea - genetics ; Blooms ; Climate change ; Emissions ; Euryarchaeota - genetics ; Eutrophication ; Fresh water ; Genera ; Genes ; Global warming ; Lakes ; Lakes - microbiology ; Methane ; Methanogenic archaea ; Methanogenic bacteria ; Methanotrophic bacteria ; Microcystis ; Microcystis - genetics ; Microorganisms ; RNA, Ribosomal, 16S - genetics ; rRNA 16S</subject><ispartof>Environmental microbiology, 2021-11, Vol.23 (11), p.6503-6519</ispartof><rights>2021 Society for Applied Microbiology and John Wiley &amp; Sons Ltd.</rights><rights>2021 Society for Applied Microbiology and John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4371-6220c44cbb2467d0cef7375750f91283f45f86ebe24271493ec559b9a6080cc53</citedby><cites>FETCH-LOGICAL-c4371-6220c44cbb2467d0cef7375750f91283f45f86ebe24271493ec559b9a6080cc53</cites><orcidid>0000-0002-5592-963X ; 0000-0001-8285-2896 ; 0000-0002-1076-6144 ; 0000-0003-3512-2940 ; 0000-0002-9141-0325 ; 0000-0002-9341-8777 ; 0000-0003-1471-2474 ; 0000-0002-9209-7553 ; 0000-0003-3595-8692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.15691$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.15691$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34327792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chuang</creatorcontrib><creatorcontrib>Hambright, K. David</creatorcontrib><creatorcontrib>Bowen, Hannah G.</creatorcontrib><creatorcontrib>Trammell, Majoi A.</creatorcontrib><creatorcontrib>Grossart, Hans‐Peter</creatorcontrib><creatorcontrib>Burford, Michele A.</creatorcontrib><creatorcontrib>Hamilton, David P.</creatorcontrib><creatorcontrib>Jiang, Helong</creatorcontrib><creatorcontrib>Latour, Delphine</creatorcontrib><creatorcontrib>Meyer, Elisabeth I.</creatorcontrib><creatorcontrib>Padisák, Judit</creatorcontrib><creatorcontrib>Zamor, Richard M.</creatorcontrib><creatorcontrib>Krumholz, Lee R.</creatorcontrib><title>Global co‐occurrence of methanogenic archaea and methanotrophic bacteria in Microcystis aggregates</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary Global warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane‐metabolizing microorganisms may be important for modulating carbon flow in cyanobacterial blooms. Here, we surveyed methanogenic and methanotrophic communities associated with floating Microcystis aggregates in 10 lakes spanning four continents, through sequencing of 16S rRNA and functional marker genes. Methanogenic archaea (mainly Methanoregula and Methanosaeta) were detectable in 5 of the 10 lakes and constituted the majority (~50%–90%) of the archaeal community in these lakes. Three of the 10 lakes contained relatively more abundant methanotrophs than the other seven lakes, with the methanotrophic genera Methyloparacoccus, Crenothrix, and an uncultured species related to Methylobacter dominating and nearly exclusively found in each of those three lakes. These three are among the five lakes in which methanogens were observed. Operational taxonomic unit (OTU) richness and abundance of methanotrophs were strongly positively correlated with those of methanogens, suggesting that their activities may be coupled. These Microcystis‐aggregate‐associated methanotrophs may be responsible for a hitherto overlooked sink for methane in surface freshwaters, and their co‐occurrence with methanogens sheds light on the methane cycle in cyanobacterial aggregates.</description><subject>Aggregates</subject><subject>Archaea</subject><subject>Archaea - genetics</subject><subject>Blooms</subject><subject>Climate change</subject><subject>Emissions</subject><subject>Euryarchaeota - genetics</subject><subject>Eutrophication</subject><subject>Fresh water</subject><subject>Genera</subject><subject>Genes</subject><subject>Global warming</subject><subject>Lakes</subject><subject>Lakes - microbiology</subject><subject>Methane</subject><subject>Methanogenic archaea</subject><subject>Methanogenic bacteria</subject><subject>Methanotrophic bacteria</subject><subject>Microcystis</subject><subject>Microcystis - genetics</subject><subject>Microorganisms</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE9PwyAYh4nROJ2evRkSz3VAoaxHs8y5ZIsXPRNK33ZdujKhjdnNj-Bn9JPI7LarXPjzPvx4eRC6o-SRhjGiPGERS1nYiiSlZ-jqdHJ-WlM2QNferwmhMpbkEg1iHjMpU3aF8lltM11jY3--vq0xnXPQGMC2wBtoV7qxJTSVwdqZlQaNdZMfC62z21UoZdq04CqNqwYvK-Os2fm28liXpYNSt-Bv0EWhaw-3h3mI3p-nb5OXaPE6m0-eFpHhsaRRwhgxnJssYzyROTFQhH6FFKQIfxjHBRfFOIEMGGeS8jQGI0SapTohY2KMiIfooc_dOvvRgW_V2nauCU8qlpAQOuZCBmrUU6FV7x0UauuqjXY7RYnaW1V7b2rvUP1ZDTfuD7ldtoH8xB81BkD0wGdVw-6_PDVdzvvgXzxQgjA</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Li, Chuang</creator><creator>Hambright, K. David</creator><creator>Bowen, Hannah G.</creator><creator>Trammell, Majoi A.</creator><creator>Grossart, Hans‐Peter</creator><creator>Burford, Michele A.</creator><creator>Hamilton, David P.</creator><creator>Jiang, Helong</creator><creator>Latour, Delphine</creator><creator>Meyer, Elisabeth I.</creator><creator>Padisák, Judit</creator><creator>Zamor, Richard M.</creator><creator>Krumholz, Lee R.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5592-963X</orcidid><orcidid>https://orcid.org/0000-0001-8285-2896</orcidid><orcidid>https://orcid.org/0000-0002-1076-6144</orcidid><orcidid>https://orcid.org/0000-0003-3512-2940</orcidid><orcidid>https://orcid.org/0000-0002-9141-0325</orcidid><orcidid>https://orcid.org/0000-0002-9341-8777</orcidid><orcidid>https://orcid.org/0000-0003-1471-2474</orcidid><orcidid>https://orcid.org/0000-0002-9209-7553</orcidid><orcidid>https://orcid.org/0000-0003-3595-8692</orcidid></search><sort><creationdate>202111</creationdate><title>Global co‐occurrence of methanogenic archaea and methanotrophic bacteria in Microcystis aggregates</title><author>Li, Chuang ; Hambright, K. David ; Bowen, Hannah G. ; Trammell, Majoi A. ; Grossart, Hans‐Peter ; Burford, Michele A. ; Hamilton, David P. ; Jiang, Helong ; Latour, Delphine ; Meyer, Elisabeth I. ; Padisák, Judit ; Zamor, Richard M. ; Krumholz, Lee R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4371-6220c44cbb2467d0cef7375750f91283f45f86ebe24271493ec559b9a6080cc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aggregates</topic><topic>Archaea</topic><topic>Archaea - genetics</topic><topic>Blooms</topic><topic>Climate change</topic><topic>Emissions</topic><topic>Euryarchaeota - genetics</topic><topic>Eutrophication</topic><topic>Fresh water</topic><topic>Genera</topic><topic>Genes</topic><topic>Global warming</topic><topic>Lakes</topic><topic>Lakes - microbiology</topic><topic>Methane</topic><topic>Methanogenic archaea</topic><topic>Methanogenic bacteria</topic><topic>Methanotrophic bacteria</topic><topic>Microcystis</topic><topic>Microcystis - genetics</topic><topic>Microorganisms</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chuang</creatorcontrib><creatorcontrib>Hambright, K. David</creatorcontrib><creatorcontrib>Bowen, Hannah G.</creatorcontrib><creatorcontrib>Trammell, Majoi A.</creatorcontrib><creatorcontrib>Grossart, Hans‐Peter</creatorcontrib><creatorcontrib>Burford, Michele A.</creatorcontrib><creatorcontrib>Hamilton, David P.</creatorcontrib><creatorcontrib>Jiang, Helong</creatorcontrib><creatorcontrib>Latour, Delphine</creatorcontrib><creatorcontrib>Meyer, Elisabeth I.</creatorcontrib><creatorcontrib>Padisák, Judit</creatorcontrib><creatorcontrib>Zamor, Richard M.</creatorcontrib><creatorcontrib>Krumholz, Lee R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chuang</au><au>Hambright, K. David</au><au>Bowen, Hannah G.</au><au>Trammell, Majoi A.</au><au>Grossart, Hans‐Peter</au><au>Burford, Michele A.</au><au>Hamilton, David P.</au><au>Jiang, Helong</au><au>Latour, Delphine</au><au>Meyer, Elisabeth I.</au><au>Padisák, Judit</au><au>Zamor, Richard M.</au><au>Krumholz, Lee R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global co‐occurrence of methanogenic archaea and methanotrophic bacteria in Microcystis aggregates</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2021-11</date><risdate>2021</risdate><volume>23</volume><issue>11</issue><spage>6503</spage><epage>6519</epage><pages>6503-6519</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary Global warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane‐metabolizing microorganisms may be important for modulating carbon flow in cyanobacterial blooms. Here, we surveyed methanogenic and methanotrophic communities associated with floating Microcystis aggregates in 10 lakes spanning four continents, through sequencing of 16S rRNA and functional marker genes. Methanogenic archaea (mainly Methanoregula and Methanosaeta) were detectable in 5 of the 10 lakes and constituted the majority (~50%–90%) of the archaeal community in these lakes. Three of the 10 lakes contained relatively more abundant methanotrophs than the other seven lakes, with the methanotrophic genera Methyloparacoccus, Crenothrix, and an uncultured species related to Methylobacter dominating and nearly exclusively found in each of those three lakes. These three are among the five lakes in which methanogens were observed. Operational taxonomic unit (OTU) richness and abundance of methanotrophs were strongly positively correlated with those of methanogens, suggesting that their activities may be coupled. These Microcystis‐aggregate‐associated methanotrophs may be responsible for a hitherto overlooked sink for methane in surface freshwaters, and their co‐occurrence with methanogens sheds light on the methane cycle in cyanobacterial aggregates.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>34327792</pmid><doi>10.1111/1462-2920.15691</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5592-963X</orcidid><orcidid>https://orcid.org/0000-0001-8285-2896</orcidid><orcidid>https://orcid.org/0000-0002-1076-6144</orcidid><orcidid>https://orcid.org/0000-0003-3512-2940</orcidid><orcidid>https://orcid.org/0000-0002-9141-0325</orcidid><orcidid>https://orcid.org/0000-0002-9341-8777</orcidid><orcidid>https://orcid.org/0000-0003-1471-2474</orcidid><orcidid>https://orcid.org/0000-0002-9209-7553</orcidid><orcidid>https://orcid.org/0000-0003-3595-8692</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1462-2912
ispartof Environmental microbiology, 2021-11, Vol.23 (11), p.6503-6519
issn 1462-2912
1462-2920
language eng
recordid cdi_proquest_journals_2602468457
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Aggregates
Archaea
Archaea - genetics
Blooms
Climate change
Emissions
Euryarchaeota - genetics
Eutrophication
Fresh water
Genera
Genes
Global warming
Lakes
Lakes - microbiology
Methane
Methanogenic archaea
Methanogenic bacteria
Methanotrophic bacteria
Microcystis
Microcystis - genetics
Microorganisms
RNA, Ribosomal, 16S - genetics
rRNA 16S
title Global co‐occurrence of methanogenic archaea and methanotrophic bacteria in Microcystis aggregates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20co%E2%80%90occurrence%20of%20methanogenic%20archaea%20and%20methanotrophic%20bacteria%20in%20Microcystis%20aggregates&rft.jtitle=Environmental%20microbiology&rft.au=Li,%20Chuang&rft.date=2021-11&rft.volume=23&rft.issue=11&rft.spage=6503&rft.epage=6519&rft.pages=6503-6519&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.15691&rft_dat=%3Cproquest_cross%3E2602468457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602468457&rft_id=info:pmid/34327792&rfr_iscdi=true