Global co‐occurrence of methanogenic archaea and methanotrophic bacteria in Microcystis aggregates
Summary Global warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane‐metabolizing microorganisms may be important for modulating...
Gespeichert in:
Veröffentlicht in: | Environmental microbiology 2021-11, Vol.23 (11), p.6503-6519 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6519 |
---|---|
container_issue | 11 |
container_start_page | 6503 |
container_title | Environmental microbiology |
container_volume | 23 |
creator | Li, Chuang Hambright, K. David Bowen, Hannah G. Trammell, Majoi A. Grossart, Hans‐Peter Burford, Michele A. Hamilton, David P. Jiang, Helong Latour, Delphine Meyer, Elisabeth I. Padisák, Judit Zamor, Richard M. Krumholz, Lee R. |
description | Summary
Global warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane‐metabolizing microorganisms may be important for modulating carbon flow in cyanobacterial blooms. Here, we surveyed methanogenic and methanotrophic communities associated with floating Microcystis aggregates in 10 lakes spanning four continents, through sequencing of 16S rRNA and functional marker genes. Methanogenic archaea (mainly Methanoregula and Methanosaeta) were detectable in 5 of the 10 lakes and constituted the majority (~50%–90%) of the archaeal community in these lakes. Three of the 10 lakes contained relatively more abundant methanotrophs than the other seven lakes, with the methanotrophic genera Methyloparacoccus, Crenothrix, and an uncultured species related to Methylobacter dominating and nearly exclusively found in each of those three lakes. These three are among the five lakes in which methanogens were observed. Operational taxonomic unit (OTU) richness and abundance of methanotrophs were strongly positively correlated with those of methanogens, suggesting that their activities may be coupled. These Microcystis‐aggregate‐associated methanotrophs may be responsible for a hitherto overlooked sink for methane in surface freshwaters, and their co‐occurrence with methanogens sheds light on the methane cycle in cyanobacterial aggregates. |
doi_str_mv | 10.1111/1462-2920.15691 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2602468457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2602468457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4371-6220c44cbb2467d0cef7375750f91283f45f86ebe24271493ec559b9a6080cc53</originalsourceid><addsrcrecordid>eNqFkE9PwyAYh4nROJ2evRkSz3VAoaxHs8y5ZIsXPRNK33ZdujKhjdnNj-Bn9JPI7LarXPjzPvx4eRC6o-SRhjGiPGERS1nYiiSlZ-jqdHJ-WlM2QNferwmhMpbkEg1iHjMpU3aF8lltM11jY3--vq0xnXPQGMC2wBtoV7qxJTSVwdqZlQaNdZMfC62z21UoZdq04CqNqwYvK-Os2fm28liXpYNSt-Bv0EWhaw-3h3mI3p-nb5OXaPE6m0-eFpHhsaRRwhgxnJssYzyROTFQhH6FFKQIfxjHBRfFOIEMGGeS8jQGI0SapTohY2KMiIfooc_dOvvRgW_V2nauCU8qlpAQOuZCBmrUU6FV7x0UauuqjXY7RYnaW1V7b2rvUP1ZDTfuD7ldtoH8xB81BkD0wGdVw-6_PDVdzvvgXzxQgjA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602468457</pqid></control><display><type>article</type><title>Global co‐occurrence of methanogenic archaea and methanotrophic bacteria in Microcystis aggregates</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Chuang ; Hambright, K. David ; Bowen, Hannah G. ; Trammell, Majoi A. ; Grossart, Hans‐Peter ; Burford, Michele A. ; Hamilton, David P. ; Jiang, Helong ; Latour, Delphine ; Meyer, Elisabeth I. ; Padisák, Judit ; Zamor, Richard M. ; Krumholz, Lee R.</creator><creatorcontrib>Li, Chuang ; Hambright, K. David ; Bowen, Hannah G. ; Trammell, Majoi A. ; Grossart, Hans‐Peter ; Burford, Michele A. ; Hamilton, David P. ; Jiang, Helong ; Latour, Delphine ; Meyer, Elisabeth I. ; Padisák, Judit ; Zamor, Richard M. ; Krumholz, Lee R.</creatorcontrib><description>Summary
Global warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane‐metabolizing microorganisms may be important for modulating carbon flow in cyanobacterial blooms. Here, we surveyed methanogenic and methanotrophic communities associated with floating Microcystis aggregates in 10 lakes spanning four continents, through sequencing of 16S rRNA and functional marker genes. Methanogenic archaea (mainly Methanoregula and Methanosaeta) were detectable in 5 of the 10 lakes and constituted the majority (~50%–90%) of the archaeal community in these lakes. Three of the 10 lakes contained relatively more abundant methanotrophs than the other seven lakes, with the methanotrophic genera Methyloparacoccus, Crenothrix, and an uncultured species related to Methylobacter dominating and nearly exclusively found in each of those three lakes. These three are among the five lakes in which methanogens were observed. Operational taxonomic unit (OTU) richness and abundance of methanotrophs were strongly positively correlated with those of methanogens, suggesting that their activities may be coupled. These Microcystis‐aggregate‐associated methanotrophs may be responsible for a hitherto overlooked sink for methane in surface freshwaters, and their co‐occurrence with methanogens sheds light on the methane cycle in cyanobacterial aggregates.</description><identifier>ISSN: 1462-2912</identifier><identifier>EISSN: 1462-2920</identifier><identifier>DOI: 10.1111/1462-2920.15691</identifier><identifier>PMID: 34327792</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Aggregates ; Archaea ; Archaea - genetics ; Blooms ; Climate change ; Emissions ; Euryarchaeota - genetics ; Eutrophication ; Fresh water ; Genera ; Genes ; Global warming ; Lakes ; Lakes - microbiology ; Methane ; Methanogenic archaea ; Methanogenic bacteria ; Methanotrophic bacteria ; Microcystis ; Microcystis - genetics ; Microorganisms ; RNA, Ribosomal, 16S - genetics ; rRNA 16S</subject><ispartof>Environmental microbiology, 2021-11, Vol.23 (11), p.6503-6519</ispartof><rights>2021 Society for Applied Microbiology and John Wiley & Sons Ltd.</rights><rights>2021 Society for Applied Microbiology and John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4371-6220c44cbb2467d0cef7375750f91283f45f86ebe24271493ec559b9a6080cc53</citedby><cites>FETCH-LOGICAL-c4371-6220c44cbb2467d0cef7375750f91283f45f86ebe24271493ec559b9a6080cc53</cites><orcidid>0000-0002-5592-963X ; 0000-0001-8285-2896 ; 0000-0002-1076-6144 ; 0000-0003-3512-2940 ; 0000-0002-9141-0325 ; 0000-0002-9341-8777 ; 0000-0003-1471-2474 ; 0000-0002-9209-7553 ; 0000-0003-3595-8692</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1462-2920.15691$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1462-2920.15691$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34327792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Chuang</creatorcontrib><creatorcontrib>Hambright, K. David</creatorcontrib><creatorcontrib>Bowen, Hannah G.</creatorcontrib><creatorcontrib>Trammell, Majoi A.</creatorcontrib><creatorcontrib>Grossart, Hans‐Peter</creatorcontrib><creatorcontrib>Burford, Michele A.</creatorcontrib><creatorcontrib>Hamilton, David P.</creatorcontrib><creatorcontrib>Jiang, Helong</creatorcontrib><creatorcontrib>Latour, Delphine</creatorcontrib><creatorcontrib>Meyer, Elisabeth I.</creatorcontrib><creatorcontrib>Padisák, Judit</creatorcontrib><creatorcontrib>Zamor, Richard M.</creatorcontrib><creatorcontrib>Krumholz, Lee R.</creatorcontrib><title>Global co‐occurrence of methanogenic archaea and methanotrophic bacteria in Microcystis aggregates</title><title>Environmental microbiology</title><addtitle>Environ Microbiol</addtitle><description>Summary
Global warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane‐metabolizing microorganisms may be important for modulating carbon flow in cyanobacterial blooms. Here, we surveyed methanogenic and methanotrophic communities associated with floating Microcystis aggregates in 10 lakes spanning four continents, through sequencing of 16S rRNA and functional marker genes. Methanogenic archaea (mainly Methanoregula and Methanosaeta) were detectable in 5 of the 10 lakes and constituted the majority (~50%–90%) of the archaeal community in these lakes. Three of the 10 lakes contained relatively more abundant methanotrophs than the other seven lakes, with the methanotrophic genera Methyloparacoccus, Crenothrix, and an uncultured species related to Methylobacter dominating and nearly exclusively found in each of those three lakes. These three are among the five lakes in which methanogens were observed. Operational taxonomic unit (OTU) richness and abundance of methanotrophs were strongly positively correlated with those of methanogens, suggesting that their activities may be coupled. These Microcystis‐aggregate‐associated methanotrophs may be responsible for a hitherto overlooked sink for methane in surface freshwaters, and their co‐occurrence with methanogens sheds light on the methane cycle in cyanobacterial aggregates.</description><subject>Aggregates</subject><subject>Archaea</subject><subject>Archaea - genetics</subject><subject>Blooms</subject><subject>Climate change</subject><subject>Emissions</subject><subject>Euryarchaeota - genetics</subject><subject>Eutrophication</subject><subject>Fresh water</subject><subject>Genera</subject><subject>Genes</subject><subject>Global warming</subject><subject>Lakes</subject><subject>Lakes - microbiology</subject><subject>Methane</subject><subject>Methanogenic archaea</subject><subject>Methanogenic bacteria</subject><subject>Methanotrophic bacteria</subject><subject>Microcystis</subject><subject>Microcystis - genetics</subject><subject>Microorganisms</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><issn>1462-2912</issn><issn>1462-2920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE9PwyAYh4nROJ2evRkSz3VAoaxHs8y5ZIsXPRNK33ZdujKhjdnNj-Bn9JPI7LarXPjzPvx4eRC6o-SRhjGiPGERS1nYiiSlZ-jqdHJ-WlM2QNferwmhMpbkEg1iHjMpU3aF8lltM11jY3--vq0xnXPQGMC2wBtoV7qxJTSVwdqZlQaNdZMfC62z21UoZdq04CqNqwYvK-Os2fm28liXpYNSt-Bv0EWhaw-3h3mI3p-nb5OXaPE6m0-eFpHhsaRRwhgxnJssYzyROTFQhH6FFKQIfxjHBRfFOIEMGGeS8jQGI0SapTohY2KMiIfooc_dOvvRgW_V2nauCU8qlpAQOuZCBmrUU6FV7x0UauuqjXY7RYnaW1V7b2rvUP1ZDTfuD7ldtoH8xB81BkD0wGdVw-6_PDVdzvvgXzxQgjA</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Li, Chuang</creator><creator>Hambright, K. David</creator><creator>Bowen, Hannah G.</creator><creator>Trammell, Majoi A.</creator><creator>Grossart, Hans‐Peter</creator><creator>Burford, Michele A.</creator><creator>Hamilton, David P.</creator><creator>Jiang, Helong</creator><creator>Latour, Delphine</creator><creator>Meyer, Elisabeth I.</creator><creator>Padisák, Judit</creator><creator>Zamor, Richard M.</creator><creator>Krumholz, Lee R.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7ST</scope><scope>7T7</scope><scope>7TN</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-5592-963X</orcidid><orcidid>https://orcid.org/0000-0001-8285-2896</orcidid><orcidid>https://orcid.org/0000-0002-1076-6144</orcidid><orcidid>https://orcid.org/0000-0003-3512-2940</orcidid><orcidid>https://orcid.org/0000-0002-9141-0325</orcidid><orcidid>https://orcid.org/0000-0002-9341-8777</orcidid><orcidid>https://orcid.org/0000-0003-1471-2474</orcidid><orcidid>https://orcid.org/0000-0002-9209-7553</orcidid><orcidid>https://orcid.org/0000-0003-3595-8692</orcidid></search><sort><creationdate>202111</creationdate><title>Global co‐occurrence of methanogenic archaea and methanotrophic bacteria in Microcystis aggregates</title><author>Li, Chuang ; Hambright, K. David ; Bowen, Hannah G. ; Trammell, Majoi A. ; Grossart, Hans‐Peter ; Burford, Michele A. ; Hamilton, David P. ; Jiang, Helong ; Latour, Delphine ; Meyer, Elisabeth I. ; Padisák, Judit ; Zamor, Richard M. ; Krumholz, Lee R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4371-6220c44cbb2467d0cef7375750f91283f45f86ebe24271493ec559b9a6080cc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aggregates</topic><topic>Archaea</topic><topic>Archaea - genetics</topic><topic>Blooms</topic><topic>Climate change</topic><topic>Emissions</topic><topic>Euryarchaeota - genetics</topic><topic>Eutrophication</topic><topic>Fresh water</topic><topic>Genera</topic><topic>Genes</topic><topic>Global warming</topic><topic>Lakes</topic><topic>Lakes - microbiology</topic><topic>Methane</topic><topic>Methanogenic archaea</topic><topic>Methanogenic bacteria</topic><topic>Methanotrophic bacteria</topic><topic>Microcystis</topic><topic>Microcystis - genetics</topic><topic>Microorganisms</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chuang</creatorcontrib><creatorcontrib>Hambright, K. David</creatorcontrib><creatorcontrib>Bowen, Hannah G.</creatorcontrib><creatorcontrib>Trammell, Majoi A.</creatorcontrib><creatorcontrib>Grossart, Hans‐Peter</creatorcontrib><creatorcontrib>Burford, Michele A.</creatorcontrib><creatorcontrib>Hamilton, David P.</creatorcontrib><creatorcontrib>Jiang, Helong</creatorcontrib><creatorcontrib>Latour, Delphine</creatorcontrib><creatorcontrib>Meyer, Elisabeth I.</creatorcontrib><creatorcontrib>Padisák, Judit</creatorcontrib><creatorcontrib>Zamor, Richard M.</creatorcontrib><creatorcontrib>Krumholz, Lee R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Oceanic Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chuang</au><au>Hambright, K. David</au><au>Bowen, Hannah G.</au><au>Trammell, Majoi A.</au><au>Grossart, Hans‐Peter</au><au>Burford, Michele A.</au><au>Hamilton, David P.</au><au>Jiang, Helong</au><au>Latour, Delphine</au><au>Meyer, Elisabeth I.</au><au>Padisák, Judit</au><au>Zamor, Richard M.</au><au>Krumholz, Lee R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global co‐occurrence of methanogenic archaea and methanotrophic bacteria in Microcystis aggregates</atitle><jtitle>Environmental microbiology</jtitle><addtitle>Environ Microbiol</addtitle><date>2021-11</date><risdate>2021</risdate><volume>23</volume><issue>11</issue><spage>6503</spage><epage>6519</epage><pages>6503-6519</pages><issn>1462-2912</issn><eissn>1462-2920</eissn><abstract>Summary
Global warming and eutrophication contribute to the worldwide increase in cyanobacterial blooms, and the level of cyanobacterial biomass is strongly associated with rises in methane emissions from surface lake waters. Hence, methane‐metabolizing microorganisms may be important for modulating carbon flow in cyanobacterial blooms. Here, we surveyed methanogenic and methanotrophic communities associated with floating Microcystis aggregates in 10 lakes spanning four continents, through sequencing of 16S rRNA and functional marker genes. Methanogenic archaea (mainly Methanoregula and Methanosaeta) were detectable in 5 of the 10 lakes and constituted the majority (~50%–90%) of the archaeal community in these lakes. Three of the 10 lakes contained relatively more abundant methanotrophs than the other seven lakes, with the methanotrophic genera Methyloparacoccus, Crenothrix, and an uncultured species related to Methylobacter dominating and nearly exclusively found in each of those three lakes. These three are among the five lakes in which methanogens were observed. Operational taxonomic unit (OTU) richness and abundance of methanotrophs were strongly positively correlated with those of methanogens, suggesting that their activities may be coupled. These Microcystis‐aggregate‐associated methanotrophs may be responsible for a hitherto overlooked sink for methane in surface freshwaters, and their co‐occurrence with methanogens sheds light on the methane cycle in cyanobacterial aggregates.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>34327792</pmid><doi>10.1111/1462-2920.15691</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5592-963X</orcidid><orcidid>https://orcid.org/0000-0001-8285-2896</orcidid><orcidid>https://orcid.org/0000-0002-1076-6144</orcidid><orcidid>https://orcid.org/0000-0003-3512-2940</orcidid><orcidid>https://orcid.org/0000-0002-9141-0325</orcidid><orcidid>https://orcid.org/0000-0002-9341-8777</orcidid><orcidid>https://orcid.org/0000-0003-1471-2474</orcidid><orcidid>https://orcid.org/0000-0002-9209-7553</orcidid><orcidid>https://orcid.org/0000-0003-3595-8692</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1462-2912 |
ispartof | Environmental microbiology, 2021-11, Vol.23 (11), p.6503-6519 |
issn | 1462-2912 1462-2920 |
language | eng |
recordid | cdi_proquest_journals_2602468457 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Aggregates Archaea Archaea - genetics Blooms Climate change Emissions Euryarchaeota - genetics Eutrophication Fresh water Genera Genes Global warming Lakes Lakes - microbiology Methane Methanogenic archaea Methanogenic bacteria Methanotrophic bacteria Microcystis Microcystis - genetics Microorganisms RNA, Ribosomal, 16S - genetics rRNA 16S |
title | Global co‐occurrence of methanogenic archaea and methanotrophic bacteria in Microcystis aggregates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20co%E2%80%90occurrence%20of%20methanogenic%20archaea%20and%20methanotrophic%20bacteria%20in%20Microcystis%20aggregates&rft.jtitle=Environmental%20microbiology&rft.au=Li,%20Chuang&rft.date=2021-11&rft.volume=23&rft.issue=11&rft.spage=6503&rft.epage=6519&rft.pages=6503-6519&rft.issn=1462-2912&rft.eissn=1462-2920&rft_id=info:doi/10.1111/1462-2920.15691&rft_dat=%3Cproquest_cross%3E2602468457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602468457&rft_id=info:pmid/34327792&rfr_iscdi=true |