Longitudinal Structure in the Altitude of the Sporadic E Observed by COSMIC in Low-Latitudes
The longitudinal structure in the altitude of the Sporadic E (Es) was investigated for the first time based on the S4 index provided by the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) in low latitudes. The longitudinal structure is identified as a symmetrically l...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2021-11, Vol.13 (22), p.4714, Article 4714 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 22 |
container_start_page | 4714 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 13 |
creator | Liu, Zhendi Li, Qingfeng Fang, Hanxian Gao, Ze |
description | The longitudinal structure in the altitude of the Sporadic E (Es) was investigated for the first time based on the S4 index provided by the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) in low latitudes. The longitudinal structure is identified as a symmetrically located wavenumber-4 (WN4) pattern within 30 & DEG;S-30 & DEG;N. The WN4 occurs primarily during the daytime at the June solstice and equinoxes, with the largest amplitude at the September equinox and the smallest one at the March equinox. It moves eastward with a speed of ~90 & DEG;/day. The strongest WN4 appears within 10-20 & DEG;N and 5-15 & DEG;S in the Northern and Southern hemispheres, respectively. At the June solstice and the September equinox, the WN4 is stronger in the Northern hemisphere than in the Southern hemisphere, while the situation is reversed at the March equinox. The altitude distribution of the convergence null in the diurnal eastward non-migrating tide with zonal wavenumber-3 (DE3) for the zonal wind is similar to that of the WN4. This and other similar features, such as the seasonal variation, eastward speed, and the symmetrical locations, support the dominant role of the DE3 tide for the formation of the WN4 structure. |
doi_str_mv | 10.3390/rs13224714 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2602181479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4c2c3c9fb808436c9ac9f727d18b71ad</doaj_id><sourcerecordid>2602181479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-13f917154cf4538a9860091fd5c063290e7411d4d07917dad5c78366b61d2c953</originalsourceid><addsrcrecordid>eNqNkUFv3CAQha0olRKlueQXIPXWyg0D2MAxspJ0JVd72PYWCWHAKaut2QDuKv--bBwlPZYLzPC9N9K8qroC_JVSia9jAkoI48BOqnOCOakZkeT0n_dZdZnSFpdDKUjMzquHPkyPPs_WT3qHNjnOJs_RIT-h_Muhm10-fjoUxpd6sw9RW2_QLVoPycU_zqLhGXXrzfdVdxT14VD3ehGlj9WHUe-Su3y9L6qfd7c_um91v75fdTd9bWgLuQY6SuDQMDOyhgotRYuxhNE2BreUSOw4A7DMYl44q0ufC9q2QwuWGNnQi2q1-Nqgt2of_W8dn1XQXr00QnxUOmZvdk4xQww1chwEFoy2RupScMItiIGDtsXr0-K1j-FpdimrbZhjWU5SpMUEBDAuC_V5oUwMKUU3vk0FrI5hqPcwCvxlgQ9uCGMy3k3GvQlKGJww2nBxzAUKLf6f7nwuyw5TF-Yp07-tLZm3</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602181479</pqid></control><display><type>article</type><title>Longitudinal Structure in the Altitude of the Sporadic E Observed by COSMIC in Low-Latitudes</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB Electronic Journals Library</source><creator>Liu, Zhendi ; Li, Qingfeng ; Fang, Hanxian ; Gao, Ze</creator><creatorcontrib>Liu, Zhendi ; Li, Qingfeng ; Fang, Hanxian ; Gao, Ze</creatorcontrib><description>The longitudinal structure in the altitude of the Sporadic E (Es) was investigated for the first time based on the S4 index provided by the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) in low latitudes. The longitudinal structure is identified as a symmetrically located wavenumber-4 (WN4) pattern within 30 & DEG;S-30 & DEG;N. The WN4 occurs primarily during the daytime at the June solstice and equinoxes, with the largest amplitude at the September equinox and the smallest one at the March equinox. It moves eastward with a speed of ~90 & DEG;/day. The strongest WN4 appears within 10-20 & DEG;N and 5-15 & DEG;S in the Northern and Southern hemispheres, respectively. At the June solstice and the September equinox, the WN4 is stronger in the Northern hemisphere than in the Southern hemisphere, while the situation is reversed at the March equinox. The altitude distribution of the convergence null in the diurnal eastward non-migrating tide with zonal wavenumber-3 (DE3) for the zonal wind is similar to that of the WN4. This and other similar features, such as the seasonal variation, eastward speed, and the symmetrical locations, support the dominant role of the DE3 tide for the formation of the WN4 structure.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs13224714</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Altitude ; Constellations ; Environmental Sciences ; Environmental Sciences & Ecology ; Equinoxes ; Geology ; Geosciences, Multidisciplinary ; Imaging Science & Photographic Technology ; Ionosphere ; Latitude ; Life Sciences & Biomedicine ; longitudinal structure ; Meteorology ; non-migrating tide ; Northern Hemisphere ; Physical Sciences ; Remote Sensing ; Satellites ; Science & Technology ; Seasonal variations ; Solstices ; Southern Hemisphere ; sporadic E ; Technology ; Wavelengths ; wavenumber-4 (WN4) ; Wind shear</subject><ispartof>Remote sensing (Basel, Switzerland), 2021-11, Vol.13 (22), p.4714, Article 4714</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>1</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000724357800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c361t-13f917154cf4538a9860091fd5c063290e7411d4d07917dad5c78366b61d2c953</citedby><cites>FETCH-LOGICAL-c361t-13f917154cf4538a9860091fd5c063290e7411d4d07917dad5c78366b61d2c953</cites><orcidid>0000-0002-9866-2293 ; 0000-0003-3700-9781</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Liu, Zhendi</creatorcontrib><creatorcontrib>Li, Qingfeng</creatorcontrib><creatorcontrib>Fang, Hanxian</creatorcontrib><creatorcontrib>Gao, Ze</creatorcontrib><title>Longitudinal Structure in the Altitude of the Sporadic E Observed by COSMIC in Low-Latitudes</title><title>Remote sensing (Basel, Switzerland)</title><addtitle>REMOTE SENS-BASEL</addtitle><description>The longitudinal structure in the altitude of the Sporadic E (Es) was investigated for the first time based on the S4 index provided by the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) in low latitudes. The longitudinal structure is identified as a symmetrically located wavenumber-4 (WN4) pattern within 30 & DEG;S-30 & DEG;N. The WN4 occurs primarily during the daytime at the June solstice and equinoxes, with the largest amplitude at the September equinox and the smallest one at the March equinox. It moves eastward with a speed of ~90 & DEG;/day. The strongest WN4 appears within 10-20 & DEG;N and 5-15 & DEG;S in the Northern and Southern hemispheres, respectively. At the June solstice and the September equinox, the WN4 is stronger in the Northern hemisphere than in the Southern hemisphere, while the situation is reversed at the March equinox. The altitude distribution of the convergence null in the diurnal eastward non-migrating tide with zonal wavenumber-3 (DE3) for the zonal wind is similar to that of the WN4. This and other similar features, such as the seasonal variation, eastward speed, and the symmetrical locations, support the dominant role of the DE3 tide for the formation of the WN4 structure.</description><subject>Altitude</subject><subject>Constellations</subject><subject>Environmental Sciences</subject><subject>Environmental Sciences & Ecology</subject><subject>Equinoxes</subject><subject>Geology</subject><subject>Geosciences, Multidisciplinary</subject><subject>Imaging Science & Photographic Technology</subject><subject>Ionosphere</subject><subject>Latitude</subject><subject>Life Sciences & Biomedicine</subject><subject>longitudinal structure</subject><subject>Meteorology</subject><subject>non-migrating tide</subject><subject>Northern Hemisphere</subject><subject>Physical Sciences</subject><subject>Remote Sensing</subject><subject>Satellites</subject><subject>Science & Technology</subject><subject>Seasonal variations</subject><subject>Solstices</subject><subject>Southern Hemisphere</subject><subject>sporadic E</subject><subject>Technology</subject><subject>Wavelengths</subject><subject>wavenumber-4 (WN4)</subject><subject>Wind shear</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkUFv3CAQha0olRKlueQXIPXWyg0D2MAxspJ0JVd72PYWCWHAKaut2QDuKv--bBwlPZYLzPC9N9K8qroC_JVSia9jAkoI48BOqnOCOakZkeT0n_dZdZnSFpdDKUjMzquHPkyPPs_WT3qHNjnOJs_RIT-h_Muhm10-fjoUxpd6sw9RW2_QLVoPycU_zqLhGXXrzfdVdxT14VD3ehGlj9WHUe-Su3y9L6qfd7c_um91v75fdTd9bWgLuQY6SuDQMDOyhgotRYuxhNE2BreUSOw4A7DMYl44q0ufC9q2QwuWGNnQi2q1-Nqgt2of_W8dn1XQXr00QnxUOmZvdk4xQww1chwEFoy2RupScMItiIGDtsXr0-K1j-FpdimrbZhjWU5SpMUEBDAuC_V5oUwMKUU3vk0FrI5hqPcwCvxlgQ9uCGMy3k3GvQlKGJww2nBxzAUKLf6f7nwuyw5TF-Yp07-tLZm3</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Liu, Zhendi</creator><creator>Li, Qingfeng</creator><creator>Fang, Hanxian</creator><creator>Gao, Ze</creator><general>Mdpi</general><general>MDPI AG</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9866-2293</orcidid><orcidid>https://orcid.org/0000-0003-3700-9781</orcidid></search><sort><creationdate>20211101</creationdate><title>Longitudinal Structure in the Altitude of the Sporadic E Observed by COSMIC in Low-Latitudes</title><author>Liu, Zhendi ; Li, Qingfeng ; Fang, Hanxian ; Gao, Ze</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-13f917154cf4538a9860091fd5c063290e7411d4d07917dad5c78366b61d2c953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Altitude</topic><topic>Constellations</topic><topic>Environmental Sciences</topic><topic>Environmental Sciences & Ecology</topic><topic>Equinoxes</topic><topic>Geology</topic><topic>Geosciences, Multidisciplinary</topic><topic>Imaging Science & Photographic Technology</topic><topic>Ionosphere</topic><topic>Latitude</topic><topic>Life Sciences & Biomedicine</topic><topic>longitudinal structure</topic><topic>Meteorology</topic><topic>non-migrating tide</topic><topic>Northern Hemisphere</topic><topic>Physical Sciences</topic><topic>Remote Sensing</topic><topic>Satellites</topic><topic>Science & Technology</topic><topic>Seasonal variations</topic><topic>Solstices</topic><topic>Southern Hemisphere</topic><topic>sporadic E</topic><topic>Technology</topic><topic>Wavelengths</topic><topic>wavenumber-4 (WN4)</topic><topic>Wind shear</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Zhendi</creatorcontrib><creatorcontrib>Li, Qingfeng</creatorcontrib><creatorcontrib>Fang, Hanxian</creatorcontrib><creatorcontrib>Gao, Ze</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Zhendi</au><au>Li, Qingfeng</au><au>Fang, Hanxian</au><au>Gao, Ze</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Longitudinal Structure in the Altitude of the Sporadic E Observed by COSMIC in Low-Latitudes</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><stitle>REMOTE SENS-BASEL</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>13</volume><issue>22</issue><spage>4714</spage><pages>4714-</pages><artnum>4714</artnum><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>The longitudinal structure in the altitude of the Sporadic E (Es) was investigated for the first time based on the S4 index provided by the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) in low latitudes. The longitudinal structure is identified as a symmetrically located wavenumber-4 (WN4) pattern within 30 & DEG;S-30 & DEG;N. The WN4 occurs primarily during the daytime at the June solstice and equinoxes, with the largest amplitude at the September equinox and the smallest one at the March equinox. It moves eastward with a speed of ~90 & DEG;/day. The strongest WN4 appears within 10-20 & DEG;N and 5-15 & DEG;S in the Northern and Southern hemispheres, respectively. At the June solstice and the September equinox, the WN4 is stronger in the Northern hemisphere than in the Southern hemisphere, while the situation is reversed at the March equinox. The altitude distribution of the convergence null in the diurnal eastward non-migrating tide with zonal wavenumber-3 (DE3) for the zonal wind is similar to that of the WN4. This and other similar features, such as the seasonal variation, eastward speed, and the symmetrical locations, support the dominant role of the DE3 tide for the formation of the WN4 structure.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/rs13224714</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9866-2293</orcidid><orcidid>https://orcid.org/0000-0003-3700-9781</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2021-11, Vol.13 (22), p.4714, Article 4714 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_proquest_journals_2602181479 |
source | DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB Electronic Journals Library |
subjects | Altitude Constellations Environmental Sciences Environmental Sciences & Ecology Equinoxes Geology Geosciences, Multidisciplinary Imaging Science & Photographic Technology Ionosphere Latitude Life Sciences & Biomedicine longitudinal structure Meteorology non-migrating tide Northern Hemisphere Physical Sciences Remote Sensing Satellites Science & Technology Seasonal variations Solstices Southern Hemisphere sporadic E Technology Wavelengths wavenumber-4 (WN4) Wind shear |
title | Longitudinal Structure in the Altitude of the Sporadic E Observed by COSMIC in Low-Latitudes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T17%3A08%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Longitudinal%20Structure%20in%20the%20Altitude%20of%20the%20Sporadic%20E%20Observed%20by%20COSMIC%20in%20Low-Latitudes&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Liu,%20Zhendi&rft.date=2021-11-01&rft.volume=13&rft.issue=22&rft.spage=4714&rft.pages=4714-&rft.artnum=4714&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs13224714&rft_dat=%3Cproquest_doaj_%3E2602181479%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602181479&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_4c2c3c9fb808436c9ac9f727d18b71ad&rfr_iscdi=true |