3D printing of advanced lithium batteries: a designing strategy of electrode/electrolyte architectures

3D printing, i.e. , additive manufacturing, is being progressively applied in lithium batteries to fabricate various electrodes and electrolytes due to the precise design of the structure from the nanoscale to the macroscale. By precisely controlling the geometry and structure, the utilization rate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2021-11, Vol.9 (45), p.25237-25257
Hauptverfasser: Pei, Mengfan, Shi, Haiting, Yao, Fengting, Liang, Shuaitong, Xu, Zhiwei, Pei, Xiaoyuan, Wang, Shuo, Hu, Yanli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25257
container_issue 45
container_start_page 25237
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 9
creator Pei, Mengfan
Shi, Haiting
Yao, Fengting
Liang, Shuaitong
Xu, Zhiwei
Pei, Xiaoyuan
Wang, Shuo
Hu, Yanli
description 3D printing, i.e. , additive manufacturing, is being progressively applied in lithium batteries to fabricate various electrodes and electrolytes due to the precise design of the structure from the nanoscale to the macroscale. By precisely controlling the geometry and structure, the utilization rate of electrode and electrolyte materials is able to be significantly improved, which is essential for enhancing the energy and power densities of lithium batteries. Herein, the manufacturing strategies and reasoning behind using 3D printing for lithium ion batteries (LIBs) and lithium metal batteries (LMBs) are reviewed. The development trend of electrodes and electrolytes designed by a variety of 3D printing technologies, including direct ink writing (DIW), inkjet printing (IJP), fused deposition modeling (FDM) and stereolithography apparatus (SLA), is summarized. Finally, the future prospects and challenges of 3D-printed lithium batteries are proposed. The major applications of 3D-printed technologies in lithium batteries.
doi_str_mv 10.1039/d1ta06683h
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2602012710</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2602012710</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-dac82e56e78a818bffb1d7f907ccd09df230e6c2eebb66a6c1c96d22b4b28643</originalsourceid><addsrcrecordid>eNpFkMtrAjEQh0NpoWK99F4I9FbYmodmk97EPiwIvXhf8phoZN21Sbbgf9-1ip3L_Aa-mYEPoXtKninhauxo1kQIyTdXaMDIlBTlRInrS5byFo1S2pK-JCFCqQHy_BXvY2hyaNa49Vi7H91YcLgOeRO6HTY6Z4gB0gvW2EEK6-aIphx1hvXhuAM12BxbB-Nzqg8ZsI52E3I_dxHSHbrxuk4wOvchWr2_reaLYvn18TmfLQvLGcuF01YymAoopZZUGu8NdaVXpLTWEeU84wSEZQDGCKGFpVYJx5iZGCbFhA_R4-nsPrbfHaRcbdsuNv3HignCCGVlb2qInk6UjW1KEXzVG9jpeKgoqY4mq1e6mv2ZXPTwwwmOyV64f9P8F1r8cfk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2602012710</pqid></control><display><type>article</type><title>3D printing of advanced lithium batteries: a designing strategy of electrode/electrolyte architectures</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Pei, Mengfan ; Shi, Haiting ; Yao, Fengting ; Liang, Shuaitong ; Xu, Zhiwei ; Pei, Xiaoyuan ; Wang, Shuo ; Hu, Yanli</creator><creatorcontrib>Pei, Mengfan ; Shi, Haiting ; Yao, Fengting ; Liang, Shuaitong ; Xu, Zhiwei ; Pei, Xiaoyuan ; Wang, Shuo ; Hu, Yanli</creatorcontrib><description>3D printing, i.e. , additive manufacturing, is being progressively applied in lithium batteries to fabricate various electrodes and electrolytes due to the precise design of the structure from the nanoscale to the macroscale. By precisely controlling the geometry and structure, the utilization rate of electrode and electrolyte materials is able to be significantly improved, which is essential for enhancing the energy and power densities of lithium batteries. Herein, the manufacturing strategies and reasoning behind using 3D printing for lithium ion batteries (LIBs) and lithium metal batteries (LMBs) are reviewed. The development trend of electrodes and electrolytes designed by a variety of 3D printing technologies, including direct ink writing (DIW), inkjet printing (IJP), fused deposition modeling (FDM) and stereolithography apparatus (SLA), is summarized. Finally, the future prospects and challenges of 3D-printed lithium batteries are proposed. The major applications of 3D-printed technologies in lithium batteries.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d1ta06683h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>3-D printers ; Batteries ; Electrodes ; Electrolytes ; Fused deposition modeling ; Inkjet printing ; Lithium ; Lithium batteries ; Lithium-ion batteries ; Lithography ; Manufacturing ; Printing ; Rapid prototyping ; Rechargeable batteries ; Three dimensional printing</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2021-11, Vol.9 (45), p.25237-25257</ispartof><rights>Copyright Royal Society of Chemistry 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-dac82e56e78a818bffb1d7f907ccd09df230e6c2eebb66a6c1c96d22b4b28643</citedby><cites>FETCH-LOGICAL-c322t-dac82e56e78a818bffb1d7f907ccd09df230e6c2eebb66a6c1c96d22b4b28643</cites><orcidid>0000-0002-8067-5344</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Pei, Mengfan</creatorcontrib><creatorcontrib>Shi, Haiting</creatorcontrib><creatorcontrib>Yao, Fengting</creatorcontrib><creatorcontrib>Liang, Shuaitong</creatorcontrib><creatorcontrib>Xu, Zhiwei</creatorcontrib><creatorcontrib>Pei, Xiaoyuan</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Hu, Yanli</creatorcontrib><title>3D printing of advanced lithium batteries: a designing strategy of electrode/electrolyte architectures</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>3D printing, i.e. , additive manufacturing, is being progressively applied in lithium batteries to fabricate various electrodes and electrolytes due to the precise design of the structure from the nanoscale to the macroscale. By precisely controlling the geometry and structure, the utilization rate of electrode and electrolyte materials is able to be significantly improved, which is essential for enhancing the energy and power densities of lithium batteries. Herein, the manufacturing strategies and reasoning behind using 3D printing for lithium ion batteries (LIBs) and lithium metal batteries (LMBs) are reviewed. The development trend of electrodes and electrolytes designed by a variety of 3D printing technologies, including direct ink writing (DIW), inkjet printing (IJP), fused deposition modeling (FDM) and stereolithography apparatus (SLA), is summarized. Finally, the future prospects and challenges of 3D-printed lithium batteries are proposed. The major applications of 3D-printed technologies in lithium batteries.</description><subject>3-D printers</subject><subject>Batteries</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Fused deposition modeling</subject><subject>Inkjet printing</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Lithography</subject><subject>Manufacturing</subject><subject>Printing</subject><subject>Rapid prototyping</subject><subject>Rechargeable batteries</subject><subject>Three dimensional printing</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpFkMtrAjEQh0NpoWK99F4I9FbYmodmk97EPiwIvXhf8phoZN21Sbbgf9-1ip3L_Aa-mYEPoXtKninhauxo1kQIyTdXaMDIlBTlRInrS5byFo1S2pK-JCFCqQHy_BXvY2hyaNa49Vi7H91YcLgOeRO6HTY6Z4gB0gvW2EEK6-aIphx1hvXhuAM12BxbB-Nzqg8ZsI52E3I_dxHSHbrxuk4wOvchWr2_reaLYvn18TmfLQvLGcuF01YymAoopZZUGu8NdaVXpLTWEeU84wSEZQDGCKGFpVYJx5iZGCbFhA_R4-nsPrbfHaRcbdsuNv3HignCCGVlb2qInk6UjW1KEXzVG9jpeKgoqY4mq1e6mv2ZXPTwwwmOyV64f9P8F1r8cfk</recordid><startdate>20211123</startdate><enddate>20211123</enddate><creator>Pei, Mengfan</creator><creator>Shi, Haiting</creator><creator>Yao, Fengting</creator><creator>Liang, Shuaitong</creator><creator>Xu, Zhiwei</creator><creator>Pei, Xiaoyuan</creator><creator>Wang, Shuo</creator><creator>Hu, Yanli</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8067-5344</orcidid></search><sort><creationdate>20211123</creationdate><title>3D printing of advanced lithium batteries: a designing strategy of electrode/electrolyte architectures</title><author>Pei, Mengfan ; Shi, Haiting ; Yao, Fengting ; Liang, Shuaitong ; Xu, Zhiwei ; Pei, Xiaoyuan ; Wang, Shuo ; Hu, Yanli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-dac82e56e78a818bffb1d7f907ccd09df230e6c2eebb66a6c1c96d22b4b28643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D printers</topic><topic>Batteries</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Fused deposition modeling</topic><topic>Inkjet printing</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Lithography</topic><topic>Manufacturing</topic><topic>Printing</topic><topic>Rapid prototyping</topic><topic>Rechargeable batteries</topic><topic>Three dimensional printing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pei, Mengfan</creatorcontrib><creatorcontrib>Shi, Haiting</creatorcontrib><creatorcontrib>Yao, Fengting</creatorcontrib><creatorcontrib>Liang, Shuaitong</creatorcontrib><creatorcontrib>Xu, Zhiwei</creatorcontrib><creatorcontrib>Pei, Xiaoyuan</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Hu, Yanli</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pei, Mengfan</au><au>Shi, Haiting</au><au>Yao, Fengting</au><au>Liang, Shuaitong</au><au>Xu, Zhiwei</au><au>Pei, Xiaoyuan</au><au>Wang, Shuo</au><au>Hu, Yanli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D printing of advanced lithium batteries: a designing strategy of electrode/electrolyte architectures</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2021-11-23</date><risdate>2021</risdate><volume>9</volume><issue>45</issue><spage>25237</spage><epage>25257</epage><pages>25237-25257</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>3D printing, i.e. , additive manufacturing, is being progressively applied in lithium batteries to fabricate various electrodes and electrolytes due to the precise design of the structure from the nanoscale to the macroscale. By precisely controlling the geometry and structure, the utilization rate of electrode and electrolyte materials is able to be significantly improved, which is essential for enhancing the energy and power densities of lithium batteries. Herein, the manufacturing strategies and reasoning behind using 3D printing for lithium ion batteries (LIBs) and lithium metal batteries (LMBs) are reviewed. The development trend of electrodes and electrolytes designed by a variety of 3D printing technologies, including direct ink writing (DIW), inkjet printing (IJP), fused deposition modeling (FDM) and stereolithography apparatus (SLA), is summarized. Finally, the future prospects and challenges of 3D-printed lithium batteries are proposed. The major applications of 3D-printed technologies in lithium batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d1ta06683h</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8067-5344</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2021-11, Vol.9 (45), p.25237-25257
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2602012710
source Royal Society Of Chemistry Journals 2008-
subjects 3-D printers
Batteries
Electrodes
Electrolytes
Fused deposition modeling
Inkjet printing
Lithium
Lithium batteries
Lithium-ion batteries
Lithography
Manufacturing
Printing
Rapid prototyping
Rechargeable batteries
Three dimensional printing
title 3D printing of advanced lithium batteries: a designing strategy of electrode/electrolyte architectures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A09%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20printing%20of%20advanced%20lithium%20batteries:%20a%20designing%20strategy%20of%20electrode/electrolyte%20architectures&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Pei,%20Mengfan&rft.date=2021-11-23&rft.volume=9&rft.issue=45&rft.spage=25237&rft.epage=25257&rft.pages=25237-25257&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d1ta06683h&rft_dat=%3Cproquest_cross%3E2602012710%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2602012710&rft_id=info:pmid/&rfr_iscdi=true