Armada: A Robust Latency-Sensitive Edge Cloud in Heterogeneous Edge-Dense Environments
Edge computing has enabled a large set of emerging edge applications by exploiting data proximity and offloading latency-sensitive and computation-intensive workloads to nearby edge servers. However, supporting edge application users at scale in wide-area environments poses challenges due to limited...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-11 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Huang, Lei Liang, Zhiying Sreekumar, Nikhil Sumanth Kaushik Vishwanath Cody Perakslis Chandra, Abhishek Weissman, Jon |
description | Edge computing has enabled a large set of emerging edge applications by exploiting data proximity and offloading latency-sensitive and computation-intensive workloads to nearby edge servers. However, supporting edge application users at scale in wide-area environments poses challenges due to limited point-of-presence edge sites and constrained elasticity. In this paper, we introduce Armada: a densely-distributed edge cloud infrastructure that explores the use of dedicated and volunteer resources to serve geo-distributed users in heterogeneous environments. We describe the lightweight Armada architecture and optimization techniques including performance-aware edge selection, auto-scaling and load balancing on the edge, fault tolerance, and in-situ data access. We evaluate Armada in both real-world volunteer environments and emulated platforms to show how common edge applications, namely real-time object detection and face recognition, can be easily deployed on Armada serving distributed users at scale with low latency. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2601721093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2601721093</sourcerecordid><originalsourceid>FETCH-proquest_journals_26017210933</originalsourceid><addsrcrecordid>eNqNykELgjAYgOERBEn5HwadhbmlVjcxo0Oniq6y8ksmutW-TejfJ9EP6PQe3mdCAi5EHK1XnM9IiNgyxnia8SQRAbnmtpe13NKcnszNo6NH6UDf39EZNCqnBqBl3QAtOuNrqjQ9gANrGtBgPH5ftBvpyPSgrNE9aIcLMn3IDiH8dU6W-_JSHKKnNS8P6KrWeKvHVfGUxRmP2UaI_9QHif1AaQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601721093</pqid></control><display><type>article</type><title>Armada: A Robust Latency-Sensitive Edge Cloud in Heterogeneous Edge-Dense Environments</title><source>Free E- Journals</source><creator>Huang, Lei ; Liang, Zhiying ; Sreekumar, Nikhil ; Sumanth Kaushik Vishwanath ; Cody Perakslis ; Chandra, Abhishek ; Weissman, Jon</creator><creatorcontrib>Huang, Lei ; Liang, Zhiying ; Sreekumar, Nikhil ; Sumanth Kaushik Vishwanath ; Cody Perakslis ; Chandra, Abhishek ; Weissman, Jon</creatorcontrib><description>Edge computing has enabled a large set of emerging edge applications by exploiting data proximity and offloading latency-sensitive and computation-intensive workloads to nearby edge servers. However, supporting edge application users at scale in wide-area environments poses challenges due to limited point-of-presence edge sites and constrained elasticity. In this paper, we introduce Armada: a densely-distributed edge cloud infrastructure that explores the use of dedicated and volunteer resources to serve geo-distributed users in heterogeneous environments. We describe the lightweight Armada architecture and optimization techniques including performance-aware edge selection, auto-scaling and load balancing on the edge, fault tolerance, and in-situ data access. We evaluate Armada in both real-world volunteer environments and emulated platforms to show how common edge applications, namely real-time object detection and face recognition, can be easily deployed on Armada serving distributed users at scale with low latency.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cloud computing ; Edge computing ; Face recognition ; Fault tolerance ; Object recognition ; Optimization ; Optimization techniques</subject><ispartof>arXiv.org, 2021-11</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Liang, Zhiying</creatorcontrib><creatorcontrib>Sreekumar, Nikhil</creatorcontrib><creatorcontrib>Sumanth Kaushik Vishwanath</creatorcontrib><creatorcontrib>Cody Perakslis</creatorcontrib><creatorcontrib>Chandra, Abhishek</creatorcontrib><creatorcontrib>Weissman, Jon</creatorcontrib><title>Armada: A Robust Latency-Sensitive Edge Cloud in Heterogeneous Edge-Dense Environments</title><title>arXiv.org</title><description>Edge computing has enabled a large set of emerging edge applications by exploiting data proximity and offloading latency-sensitive and computation-intensive workloads to nearby edge servers. However, supporting edge application users at scale in wide-area environments poses challenges due to limited point-of-presence edge sites and constrained elasticity. In this paper, we introduce Armada: a densely-distributed edge cloud infrastructure that explores the use of dedicated and volunteer resources to serve geo-distributed users in heterogeneous environments. We describe the lightweight Armada architecture and optimization techniques including performance-aware edge selection, auto-scaling and load balancing on the edge, fault tolerance, and in-situ data access. We evaluate Armada in both real-world volunteer environments and emulated platforms to show how common edge applications, namely real-time object detection and face recognition, can be easily deployed on Armada serving distributed users at scale with low latency.</description><subject>Cloud computing</subject><subject>Edge computing</subject><subject>Face recognition</subject><subject>Fault tolerance</subject><subject>Object recognition</subject><subject>Optimization</subject><subject>Optimization techniques</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNykELgjAYgOERBEn5HwadhbmlVjcxo0Oniq6y8ksmutW-TejfJ9EP6PQe3mdCAi5EHK1XnM9IiNgyxnia8SQRAbnmtpe13NKcnszNo6NH6UDf39EZNCqnBqBl3QAtOuNrqjQ9gANrGtBgPH5ftBvpyPSgrNE9aIcLMn3IDiH8dU6W-_JSHKKnNS8P6KrWeKvHVfGUxRmP2UaI_9QHif1AaQ</recordid><startdate>20211123</startdate><enddate>20211123</enddate><creator>Huang, Lei</creator><creator>Liang, Zhiying</creator><creator>Sreekumar, Nikhil</creator><creator>Sumanth Kaushik Vishwanath</creator><creator>Cody Perakslis</creator><creator>Chandra, Abhishek</creator><creator>Weissman, Jon</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211123</creationdate><title>Armada: A Robust Latency-Sensitive Edge Cloud in Heterogeneous Edge-Dense Environments</title><author>Huang, Lei ; Liang, Zhiying ; Sreekumar, Nikhil ; Sumanth Kaushik Vishwanath ; Cody Perakslis ; Chandra, Abhishek ; Weissman, Jon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_26017210933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cloud computing</topic><topic>Edge computing</topic><topic>Face recognition</topic><topic>Fault tolerance</topic><topic>Object recognition</topic><topic>Optimization</topic><topic>Optimization techniques</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Liang, Zhiying</creatorcontrib><creatorcontrib>Sreekumar, Nikhil</creatorcontrib><creatorcontrib>Sumanth Kaushik Vishwanath</creatorcontrib><creatorcontrib>Cody Perakslis</creatorcontrib><creatorcontrib>Chandra, Abhishek</creatorcontrib><creatorcontrib>Weissman, Jon</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Lei</au><au>Liang, Zhiying</au><au>Sreekumar, Nikhil</au><au>Sumanth Kaushik Vishwanath</au><au>Cody Perakslis</au><au>Chandra, Abhishek</au><au>Weissman, Jon</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Armada: A Robust Latency-Sensitive Edge Cloud in Heterogeneous Edge-Dense Environments</atitle><jtitle>arXiv.org</jtitle><date>2021-11-23</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Edge computing has enabled a large set of emerging edge applications by exploiting data proximity and offloading latency-sensitive and computation-intensive workloads to nearby edge servers. However, supporting edge application users at scale in wide-area environments poses challenges due to limited point-of-presence edge sites and constrained elasticity. In this paper, we introduce Armada: a densely-distributed edge cloud infrastructure that explores the use of dedicated and volunteer resources to serve geo-distributed users in heterogeneous environments. We describe the lightweight Armada architecture and optimization techniques including performance-aware edge selection, auto-scaling and load balancing on the edge, fault tolerance, and in-situ data access. We evaluate Armada in both real-world volunteer environments and emulated platforms to show how common edge applications, namely real-time object detection and face recognition, can be easily deployed on Armada serving distributed users at scale with low latency.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2601721093 |
source | Free E- Journals |
subjects | Cloud computing Edge computing Face recognition Fault tolerance Object recognition Optimization Optimization techniques |
title | Armada: A Robust Latency-Sensitive Edge Cloud in Heterogeneous Edge-Dense Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T11%3A41%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Armada:%20A%20Robust%20Latency-Sensitive%20Edge%20Cloud%20in%20Heterogeneous%20Edge-Dense%20Environments&rft.jtitle=arXiv.org&rft.au=Huang,%20Lei&rft.date=2021-11-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2601721093%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601721093&rft_id=info:pmid/&rfr_iscdi=true |