Adversarial Examples Detection of Radio Signals Based on Multifeature Fusion

In the field of deep learning, deep neural networks (DNNs) have shown good performance on classification applications. However, a DNN model is vulnerable to adversarial examples, which is formed by adding tiny perturbations on a normal example and can mislead the DNN model to make a wrong estimate d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems. II, Express briefs Express briefs, 2021-12, Vol.68 (12), p.3607-3611
Hauptverfasser: Xu, Dongwei, Yang, Hao, Gu, Chuntao, Chen, Zhuangzhi, Xuan, Qi, Yang, Xiaoniu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3611
container_issue 12
container_start_page 3607
container_title IEEE transactions on circuits and systems. II, Express briefs
container_volume 68
creator Xu, Dongwei
Yang, Hao
Gu, Chuntao
Chen, Zhuangzhi
Xuan, Qi
Yang, Xiaoniu
description In the field of deep learning, deep neural networks (DNNs) have shown good performance on classification applications. However, a DNN model is vulnerable to adversarial examples, which is formed by adding tiny perturbations on a normal example and can mislead the DNN model to make a wrong estimate during the prediction. In this brief, for adversarial attacks in radio signals field, we propose a novel adversarial example detection strategy based on multifeature fusion and provide a framework which includes generating adversarial examples, extracting the local intrinsic dimensionality (LID) features and the constellation diagram (CD) features, detecting adversarial examples. We obtain the output values of normal examples and adversarial examples in each layer of the model respectively, and then, calculate the LID features values of examples by the maximum likelihood estimate based on a certain neighborhood range. Meanwhile, we calculate the CD features values by the range feature and density feature of the constellation diagram distribution. Finally, a logistic regression classifier is trained based on multifeature fusion values to detect adversarial examples. The experimental results across two benchmark datasets demonstrate that the proposed multifeature fusion method could accurately detect adversarial examples of radio signals. The detection accuracy is up to 98.7% when the perturbation reached 10%.
doi_str_mv 10.1109/TCSII.2021.3095663
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2601646629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9477416</ieee_id><sourcerecordid>2601646629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-728e8b33ee46fed36f8a8901d14f5d469435a743af691f6d49e17a5d28e814143</originalsourceid><addsrcrecordid>eNo9kMFKAzEQQIMoWKs_oJeA562ZJJtsjrW2WqgItp5DbCayZdutya7o37tri6cM5L1heIRcAxsBMHO3mizn8xFnHEaCmVwpcUIGkOdFJrSB036WJtNa6nNykdKGMW6Y4AOyGPsvjMnF0lV0-u22-woTfcAG101Z72gd6KvzZU2X5cfOVYneu4Sedj_PbdWUAV3TRqSzNnX0JTkLHYNXx3dI3mbT1eQpW7w8zifjRbbmJm8yzQss3oVAlCqgFyoUrjAMPMiQe6mMFLnTUrigDATlpUHQLve9BhKkGJLbw959rD9bTI3d1G3sz7NcMVBSKW46ih-odaxTihjsPpZbF38sMNtXs3_VbF_NHqt10s1BKhHxXzCySwdK_AKlnWfz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601646629</pqid></control><display><type>article</type><title>Adversarial Examples Detection of Radio Signals Based on Multifeature Fusion</title><source>IEEE Electronic Library (IEL)</source><creator>Xu, Dongwei ; Yang, Hao ; Gu, Chuntao ; Chen, Zhuangzhi ; Xuan, Qi ; Yang, Xiaoniu</creator><creatorcontrib>Xu, Dongwei ; Yang, Hao ; Gu, Chuntao ; Chen, Zhuangzhi ; Xuan, Qi ; Yang, Xiaoniu</creatorcontrib><description>In the field of deep learning, deep neural networks (DNNs) have shown good performance on classification applications. However, a DNN model is vulnerable to adversarial examples, which is formed by adding tiny perturbations on a normal example and can mislead the DNN model to make a wrong estimate during the prediction. In this brief, for adversarial attacks in radio signals field, we propose a novel adversarial example detection strategy based on multifeature fusion and provide a framework which includes generating adversarial examples, extracting the local intrinsic dimensionality (LID) features and the constellation diagram (CD) features, detecting adversarial examples. We obtain the output values of normal examples and adversarial examples in each layer of the model respectively, and then, calculate the LID features values of examples by the maximum likelihood estimate based on a certain neighborhood range. Meanwhile, we calculate the CD features values by the range feature and density feature of the constellation diagram distribution. Finally, a logistic regression classifier is trained based on multifeature fusion values to detect adversarial examples. The experimental results across two benchmark datasets demonstrate that the proposed multifeature fusion method could accurately detect adversarial examples of radio signals. The detection accuracy is up to 98.7% when the perturbation reached 10%.</description><identifier>ISSN: 1549-7747</identifier><identifier>EISSN: 1558-3791</identifier><identifier>DOI: 10.1109/TCSII.2021.3095663</identifier><identifier>CODEN: ITCSFK</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adversarial attacks ; adversarial detection ; Adversarial machine learning ; Artificial neural networks ; Constellations ; Deep learning ; Feature extraction ; Machine learning ; Maximum likelihood estimates ; Maximum likelihood estimation ; Perturbation ; Perturbation methods ; Radio signals ; signal modulation classification ; Signal to noise ratio</subject><ispartof>IEEE transactions on circuits and systems. II, Express briefs, 2021-12, Vol.68 (12), p.3607-3611</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-728e8b33ee46fed36f8a8901d14f5d469435a743af691f6d49e17a5d28e814143</citedby><cites>FETCH-LOGICAL-c295t-728e8b33ee46fed36f8a8901d14f5d469435a743af691f6d49e17a5d28e814143</cites><orcidid>0000-0002-8736-8814 ; 0000-0002-8083-7040 ; 0000-0002-1042-470X ; 0000-0003-2693-922X ; 0000-0003-3117-2211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9477416$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9477416$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Dongwei</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Gu, Chuntao</creatorcontrib><creatorcontrib>Chen, Zhuangzhi</creatorcontrib><creatorcontrib>Xuan, Qi</creatorcontrib><creatorcontrib>Yang, Xiaoniu</creatorcontrib><title>Adversarial Examples Detection of Radio Signals Based on Multifeature Fusion</title><title>IEEE transactions on circuits and systems. II, Express briefs</title><addtitle>TCSII</addtitle><description>In the field of deep learning, deep neural networks (DNNs) have shown good performance on classification applications. However, a DNN model is vulnerable to adversarial examples, which is formed by adding tiny perturbations on a normal example and can mislead the DNN model to make a wrong estimate during the prediction. In this brief, for adversarial attacks in radio signals field, we propose a novel adversarial example detection strategy based on multifeature fusion and provide a framework which includes generating adversarial examples, extracting the local intrinsic dimensionality (LID) features and the constellation diagram (CD) features, detecting adversarial examples. We obtain the output values of normal examples and adversarial examples in each layer of the model respectively, and then, calculate the LID features values of examples by the maximum likelihood estimate based on a certain neighborhood range. Meanwhile, we calculate the CD features values by the range feature and density feature of the constellation diagram distribution. Finally, a logistic regression classifier is trained based on multifeature fusion values to detect adversarial examples. The experimental results across two benchmark datasets demonstrate that the proposed multifeature fusion method could accurately detect adversarial examples of radio signals. The detection accuracy is up to 98.7% when the perturbation reached 10%.</description><subject>Adversarial attacks</subject><subject>adversarial detection</subject><subject>Adversarial machine learning</subject><subject>Artificial neural networks</subject><subject>Constellations</subject><subject>Deep learning</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Maximum likelihood estimates</subject><subject>Maximum likelihood estimation</subject><subject>Perturbation</subject><subject>Perturbation methods</subject><subject>Radio signals</subject><subject>signal modulation classification</subject><subject>Signal to noise ratio</subject><issn>1549-7747</issn><issn>1558-3791</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQQIMoWKs_oJeA562ZJJtsjrW2WqgItp5DbCayZdutya7o37tri6cM5L1heIRcAxsBMHO3mizn8xFnHEaCmVwpcUIGkOdFJrSB036WJtNa6nNykdKGMW6Y4AOyGPsvjMnF0lV0-u22-woTfcAG101Z72gd6KvzZU2X5cfOVYneu4Sedj_PbdWUAV3TRqSzNnX0JTkLHYNXx3dI3mbT1eQpW7w8zifjRbbmJm8yzQss3oVAlCqgFyoUrjAMPMiQe6mMFLnTUrigDATlpUHQLve9BhKkGJLbw959rD9bTI3d1G3sz7NcMVBSKW46ih-odaxTihjsPpZbF38sMNtXs3_VbF_NHqt10s1BKhHxXzCySwdK_AKlnWfz</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Xu, Dongwei</creator><creator>Yang, Hao</creator><creator>Gu, Chuntao</creator><creator>Chen, Zhuangzhi</creator><creator>Xuan, Qi</creator><creator>Yang, Xiaoniu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8736-8814</orcidid><orcidid>https://orcid.org/0000-0002-8083-7040</orcidid><orcidid>https://orcid.org/0000-0002-1042-470X</orcidid><orcidid>https://orcid.org/0000-0003-2693-922X</orcidid><orcidid>https://orcid.org/0000-0003-3117-2211</orcidid></search><sort><creationdate>20211201</creationdate><title>Adversarial Examples Detection of Radio Signals Based on Multifeature Fusion</title><author>Xu, Dongwei ; Yang, Hao ; Gu, Chuntao ; Chen, Zhuangzhi ; Xuan, Qi ; Yang, Xiaoniu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-728e8b33ee46fed36f8a8901d14f5d469435a743af691f6d49e17a5d28e814143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adversarial attacks</topic><topic>adversarial detection</topic><topic>Adversarial machine learning</topic><topic>Artificial neural networks</topic><topic>Constellations</topic><topic>Deep learning</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Maximum likelihood estimates</topic><topic>Maximum likelihood estimation</topic><topic>Perturbation</topic><topic>Perturbation methods</topic><topic>Radio signals</topic><topic>signal modulation classification</topic><topic>Signal to noise ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Dongwei</creatorcontrib><creatorcontrib>Yang, Hao</creatorcontrib><creatorcontrib>Gu, Chuntao</creatorcontrib><creatorcontrib>Chen, Zhuangzhi</creatorcontrib><creatorcontrib>Xuan, Qi</creatorcontrib><creatorcontrib>Yang, Xiaoniu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Dongwei</au><au>Yang, Hao</au><au>Gu, Chuntao</au><au>Chen, Zhuangzhi</au><au>Xuan, Qi</au><au>Yang, Xiaoniu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adversarial Examples Detection of Radio Signals Based on Multifeature Fusion</atitle><jtitle>IEEE transactions on circuits and systems. II, Express briefs</jtitle><stitle>TCSII</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>68</volume><issue>12</issue><spage>3607</spage><epage>3611</epage><pages>3607-3611</pages><issn>1549-7747</issn><eissn>1558-3791</eissn><coden>ITCSFK</coden><abstract>In the field of deep learning, deep neural networks (DNNs) have shown good performance on classification applications. However, a DNN model is vulnerable to adversarial examples, which is formed by adding tiny perturbations on a normal example and can mislead the DNN model to make a wrong estimate during the prediction. In this brief, for adversarial attacks in radio signals field, we propose a novel adversarial example detection strategy based on multifeature fusion and provide a framework which includes generating adversarial examples, extracting the local intrinsic dimensionality (LID) features and the constellation diagram (CD) features, detecting adversarial examples. We obtain the output values of normal examples and adversarial examples in each layer of the model respectively, and then, calculate the LID features values of examples by the maximum likelihood estimate based on a certain neighborhood range. Meanwhile, we calculate the CD features values by the range feature and density feature of the constellation diagram distribution. Finally, a logistic regression classifier is trained based on multifeature fusion values to detect adversarial examples. The experimental results across two benchmark datasets demonstrate that the proposed multifeature fusion method could accurately detect adversarial examples of radio signals. The detection accuracy is up to 98.7% when the perturbation reached 10%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSII.2021.3095663</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-8736-8814</orcidid><orcidid>https://orcid.org/0000-0002-8083-7040</orcidid><orcidid>https://orcid.org/0000-0002-1042-470X</orcidid><orcidid>https://orcid.org/0000-0003-2693-922X</orcidid><orcidid>https://orcid.org/0000-0003-3117-2211</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1549-7747
ispartof IEEE transactions on circuits and systems. II, Express briefs, 2021-12, Vol.68 (12), p.3607-3611
issn 1549-7747
1558-3791
language eng
recordid cdi_proquest_journals_2601646629
source IEEE Electronic Library (IEL)
subjects Adversarial attacks
adversarial detection
Adversarial machine learning
Artificial neural networks
Constellations
Deep learning
Feature extraction
Machine learning
Maximum likelihood estimates
Maximum likelihood estimation
Perturbation
Perturbation methods
Radio signals
signal modulation classification
Signal to noise ratio
title Adversarial Examples Detection of Radio Signals Based on Multifeature Fusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A56%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adversarial%20Examples%20Detection%20of%20Radio%20Signals%20Based%20on%20Multifeature%20Fusion&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems.%20II,%20Express%20briefs&rft.au=Xu,%20Dongwei&rft.date=2021-12-01&rft.volume=68&rft.issue=12&rft.spage=3607&rft.epage=3611&rft.pages=3607-3611&rft.issn=1549-7747&rft.eissn=1558-3791&rft.coden=ITCSFK&rft_id=info:doi/10.1109/TCSII.2021.3095663&rft_dat=%3Cproquest_RIE%3E2601646629%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601646629&rft_id=info:pmid/&rft_ieee_id=9477416&rfr_iscdi=true