Alicante-Murcia Freeway Scenario: A High-Accuracy and Large-Scale Traffic Simulation Scenario Generated Using a Novel Traffic Demand Calibration Method in SUMO
The design, testing and optimization of Vehicle to Everything (V2X), connected and automated driving and Intelligent Transportation Systems (ITS) and technologies requires mobility traces and traffic simulation scenarios that can faithfully characterize the vehicular mobility at the macroscopic and...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.154423-154434 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154434 |
---|---|
container_issue | |
container_start_page | 154423 |
container_title | IEEE access |
container_volume | 9 |
creator | Gonzalez-Delicado, Juan Jesus Gozalvez, Javier Mena-Oreja, Jesus Sepulcre, Miguel Coll-Perales, Baldomero |
description | The design, testing and optimization of Vehicle to Everything (V2X), connected and automated driving and Intelligent Transportation Systems (ITS) and technologies requires mobility traces and traffic simulation scenarios that can faithfully characterize the vehicular mobility at the macroscopic and microscopic levels under large-scale and complex scenarios. The generation of accurate scenarios and synthetic traces requires a precise modelling approach, and the possibility to validate them against real-world measurements that are generally not available for large-scale scenarios. This limits the open availability of realistic and large-scale traffic simulation scenarios. The purpose of this paper is to present a large-scale and high-accuracy traffic simulation scenario. The scenario has been implemented over the open-source SUMO traffic simulator and is openly released to the community. The scenario accurately models the traffic flow, the traffic speed and the road's occupancy for 9 full days of traffic over a 97 km freeway section. The scenario models mixed traffic with light and heavy vehicles. The simulation scenario has been calibrated using a unique dataset provided by the Spanish road authority and a novel learning-based and iterative traffic demand calibration technique for SUMO. This technique, referred to as Clone Feedback, is proposed for the first time in this paper and does not require a pre-calibration to generate realistic traffic demand. Clone Feedback can generate calibrated mixed traffic (light and heavy vehicles) using as input only traffic flow measurements. The results obtained show that Clone Feedback outperforms two reference techniques for calibrating the traffic demand in SUMO. |
doi_str_mv | 10.1109/ACCESS.2021.3126269 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2601646482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9606704</ieee_id><doaj_id>oai_doaj_org_article_8ffa382dcf22473e894114674b6c6076</doaj_id><sourcerecordid>2601646482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-407bd997906a26fdafbbf0c1c8a78a5ae5e2aa41fe7326e045b90b054626c7d33</originalsourceid><addsrcrecordid>eNpNkctu2zAQRYWiARKk-YJsCHQtly-RUneCmhdgNwvFa2JEDR0asphSUgN_TX-1chUY5YbEYM6ZAW-S3DK6YowW38qquqvrFaecrQTjiqviU3LFmSpSkQn1-b_3ZXIzDHs6n3wuZfoq-VN23kI_YrqZovVA7iPiOxxJbbGH6MN3UpJHv3tNS2unCPZIoG_JGuIO09pCh-QlgnPektofpg5GH_ozTB6wxwgjtmQ7-H5HgPwMv7E7Mz_wcNJV0PkmLuwGx9fQEj9btpvnL8mFg27Am4_7Otne371Uj-n6-eGpKteplTQfU0l10xaFLqgCrlwLrmkctczmoHPIADPkAJI51IIrpDJrCtrQTM6_ZXUrxHXytHjbAHvzFv0B4tEE8OZfIcSdgTh626HJnQOR89Y6zqUWmBeSMam0bJRVVKvZ9XVxvcXwa8JhNPswxX5e33BFmZJK5nzuEkuXjWEYIrrzVEbNKVizBGtOwZqPYGfqdqE8Ip6JQlGlqRR_AbhEnrA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601646482</pqid></control><display><type>article</type><title>Alicante-Murcia Freeway Scenario: A High-Accuracy and Large-Scale Traffic Simulation Scenario Generated Using a Novel Traffic Demand Calibration Method in SUMO</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gonzalez-Delicado, Juan Jesus ; Gozalvez, Javier ; Mena-Oreja, Jesus ; Sepulcre, Miguel ; Coll-Perales, Baldomero</creator><creatorcontrib>Gonzalez-Delicado, Juan Jesus ; Gozalvez, Javier ; Mena-Oreja, Jesus ; Sepulcre, Miguel ; Coll-Perales, Baldomero</creatorcontrib><description>The design, testing and optimization of Vehicle to Everything (V2X), connected and automated driving and Intelligent Transportation Systems (ITS) and technologies requires mobility traces and traffic simulation scenarios that can faithfully characterize the vehicular mobility at the macroscopic and microscopic levels under large-scale and complex scenarios. The generation of accurate scenarios and synthetic traces requires a precise modelling approach, and the possibility to validate them against real-world measurements that are generally not available for large-scale scenarios. This limits the open availability of realistic and large-scale traffic simulation scenarios. The purpose of this paper is to present a large-scale and high-accuracy traffic simulation scenario. The scenario has been implemented over the open-source SUMO traffic simulator and is openly released to the community. The scenario accurately models the traffic flow, the traffic speed and the road's occupancy for 9 full days of traffic over a 97 km freeway section. The scenario models mixed traffic with light and heavy vehicles. The simulation scenario has been calibrated using a unique dataset provided by the Spanish road authority and a novel learning-based and iterative traffic demand calibration technique for SUMO. This technique, referred to as Clone Feedback, is proposed for the first time in this paper and does not require a pre-calibration to generate realistic traffic demand. Clone Feedback can generate calibrated mixed traffic (light and heavy vehicles) using as input only traffic flow measurements. The results obtained show that Clone Feedback outperforms two reference techniques for calibrating the traffic demand in SUMO.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3126269</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biological system modeling ; Cadyts ; Calibration ; CAVs ; Demand ; Design optimization ; Feedback ; freeway ; Heavy vehicles ; Highways ; Intelligent transportation systems ; Iterative methods ; ITS ; large-scale ; macroscopic ; microscopic ; Microscopy ; Occupancy ; road occupancy ; Roads ; Simulation ; SUMO ; Testing ; Traffic control ; traffic demand ; Traffic flow ; Traffic models ; Traffic simulation ; Traffic speed ; V2X ; Vehicle-to-everything</subject><ispartof>IEEE access, 2021, Vol.9, p.154423-154434</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-407bd997906a26fdafbbf0c1c8a78a5ae5e2aa41fe7326e045b90b054626c7d33</citedby><cites>FETCH-LOGICAL-c408t-407bd997906a26fdafbbf0c1c8a78a5ae5e2aa41fe7326e045b90b054626c7d33</cites><orcidid>0000-0002-7117-1945 ; 0000-0003-3234-5719 ; 0000-0002-8707-7136 ; 0000-0002-2441-668X ; 0000-0003-0064-0772</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9606704$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Gonzalez-Delicado, Juan Jesus</creatorcontrib><creatorcontrib>Gozalvez, Javier</creatorcontrib><creatorcontrib>Mena-Oreja, Jesus</creatorcontrib><creatorcontrib>Sepulcre, Miguel</creatorcontrib><creatorcontrib>Coll-Perales, Baldomero</creatorcontrib><title>Alicante-Murcia Freeway Scenario: A High-Accuracy and Large-Scale Traffic Simulation Scenario Generated Using a Novel Traffic Demand Calibration Method in SUMO</title><title>IEEE access</title><addtitle>Access</addtitle><description>The design, testing and optimization of Vehicle to Everything (V2X), connected and automated driving and Intelligent Transportation Systems (ITS) and technologies requires mobility traces and traffic simulation scenarios that can faithfully characterize the vehicular mobility at the macroscopic and microscopic levels under large-scale and complex scenarios. The generation of accurate scenarios and synthetic traces requires a precise modelling approach, and the possibility to validate them against real-world measurements that are generally not available for large-scale scenarios. This limits the open availability of realistic and large-scale traffic simulation scenarios. The purpose of this paper is to present a large-scale and high-accuracy traffic simulation scenario. The scenario has been implemented over the open-source SUMO traffic simulator and is openly released to the community. The scenario accurately models the traffic flow, the traffic speed and the road's occupancy for 9 full days of traffic over a 97 km freeway section. The scenario models mixed traffic with light and heavy vehicles. The simulation scenario has been calibrated using a unique dataset provided by the Spanish road authority and a novel learning-based and iterative traffic demand calibration technique for SUMO. This technique, referred to as Clone Feedback, is proposed for the first time in this paper and does not require a pre-calibration to generate realistic traffic demand. Clone Feedback can generate calibrated mixed traffic (light and heavy vehicles) using as input only traffic flow measurements. The results obtained show that Clone Feedback outperforms two reference techniques for calibrating the traffic demand in SUMO.</description><subject>Biological system modeling</subject><subject>Cadyts</subject><subject>Calibration</subject><subject>CAVs</subject><subject>Demand</subject><subject>Design optimization</subject><subject>Feedback</subject><subject>freeway</subject><subject>Heavy vehicles</subject><subject>Highways</subject><subject>Intelligent transportation systems</subject><subject>Iterative methods</subject><subject>ITS</subject><subject>large-scale</subject><subject>macroscopic</subject><subject>microscopic</subject><subject>Microscopy</subject><subject>Occupancy</subject><subject>road occupancy</subject><subject>Roads</subject><subject>Simulation</subject><subject>SUMO</subject><subject>Testing</subject><subject>Traffic control</subject><subject>traffic demand</subject><subject>Traffic flow</subject><subject>Traffic models</subject><subject>Traffic simulation</subject><subject>Traffic speed</subject><subject>V2X</subject><subject>Vehicle-to-everything</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkctu2zAQRYWiARKk-YJsCHQtly-RUneCmhdgNwvFa2JEDR0asphSUgN_TX-1chUY5YbEYM6ZAW-S3DK6YowW38qquqvrFaecrQTjiqviU3LFmSpSkQn1-b_3ZXIzDHs6n3wuZfoq-VN23kI_YrqZovVA7iPiOxxJbbGH6MN3UpJHv3tNS2unCPZIoG_JGuIO09pCh-QlgnPektofpg5GH_ozTB6wxwgjtmQ7-H5HgPwMv7E7Mz_wcNJV0PkmLuwGx9fQEj9btpvnL8mFg27Am4_7Otne371Uj-n6-eGpKteplTQfU0l10xaFLqgCrlwLrmkctczmoHPIADPkAJI51IIrpDJrCtrQTM6_ZXUrxHXytHjbAHvzFv0B4tEE8OZfIcSdgTh626HJnQOR89Y6zqUWmBeSMam0bJRVVKvZ9XVxvcXwa8JhNPswxX5e33BFmZJK5nzuEkuXjWEYIrrzVEbNKVizBGtOwZqPYGfqdqE8Ip6JQlGlqRR_AbhEnrA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Gonzalez-Delicado, Juan Jesus</creator><creator>Gozalvez, Javier</creator><creator>Mena-Oreja, Jesus</creator><creator>Sepulcre, Miguel</creator><creator>Coll-Perales, Baldomero</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7117-1945</orcidid><orcidid>https://orcid.org/0000-0003-3234-5719</orcidid><orcidid>https://orcid.org/0000-0002-8707-7136</orcidid><orcidid>https://orcid.org/0000-0002-2441-668X</orcidid><orcidid>https://orcid.org/0000-0003-0064-0772</orcidid></search><sort><creationdate>2021</creationdate><title>Alicante-Murcia Freeway Scenario: A High-Accuracy and Large-Scale Traffic Simulation Scenario Generated Using a Novel Traffic Demand Calibration Method in SUMO</title><author>Gonzalez-Delicado, Juan Jesus ; Gozalvez, Javier ; Mena-Oreja, Jesus ; Sepulcre, Miguel ; Coll-Perales, Baldomero</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-407bd997906a26fdafbbf0c1c8a78a5ae5e2aa41fe7326e045b90b054626c7d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological system modeling</topic><topic>Cadyts</topic><topic>Calibration</topic><topic>CAVs</topic><topic>Demand</topic><topic>Design optimization</topic><topic>Feedback</topic><topic>freeway</topic><topic>Heavy vehicles</topic><topic>Highways</topic><topic>Intelligent transportation systems</topic><topic>Iterative methods</topic><topic>ITS</topic><topic>large-scale</topic><topic>macroscopic</topic><topic>microscopic</topic><topic>Microscopy</topic><topic>Occupancy</topic><topic>road occupancy</topic><topic>Roads</topic><topic>Simulation</topic><topic>SUMO</topic><topic>Testing</topic><topic>Traffic control</topic><topic>traffic demand</topic><topic>Traffic flow</topic><topic>Traffic models</topic><topic>Traffic simulation</topic><topic>Traffic speed</topic><topic>V2X</topic><topic>Vehicle-to-everything</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez-Delicado, Juan Jesus</creatorcontrib><creatorcontrib>Gozalvez, Javier</creatorcontrib><creatorcontrib>Mena-Oreja, Jesus</creatorcontrib><creatorcontrib>Sepulcre, Miguel</creatorcontrib><creatorcontrib>Coll-Perales, Baldomero</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez-Delicado, Juan Jesus</au><au>Gozalvez, Javier</au><au>Mena-Oreja, Jesus</au><au>Sepulcre, Miguel</au><au>Coll-Perales, Baldomero</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alicante-Murcia Freeway Scenario: A High-Accuracy and Large-Scale Traffic Simulation Scenario Generated Using a Novel Traffic Demand Calibration Method in SUMO</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>154423</spage><epage>154434</epage><pages>154423-154434</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The design, testing and optimization of Vehicle to Everything (V2X), connected and automated driving and Intelligent Transportation Systems (ITS) and technologies requires mobility traces and traffic simulation scenarios that can faithfully characterize the vehicular mobility at the macroscopic and microscopic levels under large-scale and complex scenarios. The generation of accurate scenarios and synthetic traces requires a precise modelling approach, and the possibility to validate them against real-world measurements that are generally not available for large-scale scenarios. This limits the open availability of realistic and large-scale traffic simulation scenarios. The purpose of this paper is to present a large-scale and high-accuracy traffic simulation scenario. The scenario has been implemented over the open-source SUMO traffic simulator and is openly released to the community. The scenario accurately models the traffic flow, the traffic speed and the road's occupancy for 9 full days of traffic over a 97 km freeway section. The scenario models mixed traffic with light and heavy vehicles. The simulation scenario has been calibrated using a unique dataset provided by the Spanish road authority and a novel learning-based and iterative traffic demand calibration technique for SUMO. This technique, referred to as Clone Feedback, is proposed for the first time in this paper and does not require a pre-calibration to generate realistic traffic demand. Clone Feedback can generate calibrated mixed traffic (light and heavy vehicles) using as input only traffic flow measurements. The results obtained show that Clone Feedback outperforms two reference techniques for calibrating the traffic demand in SUMO.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3126269</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7117-1945</orcidid><orcidid>https://orcid.org/0000-0003-3234-5719</orcidid><orcidid>https://orcid.org/0000-0002-8707-7136</orcidid><orcidid>https://orcid.org/0000-0002-2441-668X</orcidid><orcidid>https://orcid.org/0000-0003-0064-0772</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.154423-154434 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2601646482 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Biological system modeling Cadyts Calibration CAVs Demand Design optimization Feedback freeway Heavy vehicles Highways Intelligent transportation systems Iterative methods ITS large-scale macroscopic microscopic Microscopy Occupancy road occupancy Roads Simulation SUMO Testing Traffic control traffic demand Traffic flow Traffic models Traffic simulation Traffic speed V2X Vehicle-to-everything |
title | Alicante-Murcia Freeway Scenario: A High-Accuracy and Large-Scale Traffic Simulation Scenario Generated Using a Novel Traffic Demand Calibration Method in SUMO |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alicante-Murcia%20Freeway%20Scenario:%20A%20High-Accuracy%20and%20Large-Scale%20Traffic%20Simulation%20Scenario%20Generated%20Using%20a%20Novel%20Traffic%20Demand%20Calibration%20Method%20in%20SUMO&rft.jtitle=IEEE%20access&rft.au=Gonzalez-Delicado,%20Juan%20Jesus&rft.date=2021&rft.volume=9&rft.spage=154423&rft.epage=154434&rft.pages=154423-154434&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3126269&rft_dat=%3Cproquest_ieee_%3E2601646482%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601646482&rft_id=info:pmid/&rft_ieee_id=9606704&rft_doaj_id=oai_doaj_org_article_8ffa382dcf22473e894114674b6c6076&rfr_iscdi=true |