Two-Feedback Loop Shunt Regulator Based on PWM RF Power Detector Aiming RFID Applications

The paper presents a novel shunt voltage regulation architecture that uses an RF power detector, based on Pulse Width Modulation (PWM) technique, aiming at magnetic coupled Radio-Frequency Identification (RFID) transponders. The proposed regulator architecture implements two feedback loops: a voltag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of radio frequency identification (Online) 2021-12, Vol.5 (4), p.387-396
Hauptverfasser: Cantalice, Rafael, Cortes, Fernando Paixao, Fabris, Eric Ericson, Ferreira, Sandro Binsfeld, Klimach, Hamilton
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 396
container_issue 4
container_start_page 387
container_title IEEE journal of radio frequency identification (Online)
container_volume 5
creator Cantalice, Rafael
Cortes, Fernando Paixao
Fabris, Eric Ericson
Ferreira, Sandro Binsfeld
Klimach, Hamilton
description The paper presents a novel shunt voltage regulation architecture that uses an RF power detector, based on Pulse Width Modulation (PWM) technique, aiming at magnetic coupled Radio-Frequency Identification (RFID) transponders. The proposed regulator architecture implements two feedback loops: a voltage clamping circuit that composes a fast correction loop and a slow but accurate power detector loop. The first clamping loop guarantees fast over-voltage protection, mainly in high RF power condition (short reading distance), but degrades power efficiency when in low power condition (large reading distance). The second loop corrects the imprecision of the first loop according to the detected RF input power. Therefore, it increases power efficiency and reading distance when in low RF power condition. The RF power detector architecture, based on a PWM technique, and the shunt regulator design are presented and discussed in detail. RFID power regulation issues are also discussed, followed by a brief review of RF power detector circuits. The complete regulator architecture was implemented in a 180nm CMOS low cost process and prototyped as part of a commercial low-frequency (134 kHz) RFID transponder. The complete transponder area is 870 \times 870 \mu \text{m}^{2} , being 130 \times 230 \mu \text{m}^{2} related to the regulator circuit only. Both resonant and supply capacitors are implemented on chip. The analog and digital functional blocks of the RFID system consume 4.5 \mu \text{W} . Performance of the transponder is measured with the shunt regulator enabled and compared with the power limiting approach using only clamping diodes. Measured results show an improvement of 16.7% in the maximum communication distance between the transponder and the reader because of the proposed regulation strategy.
doi_str_mv 10.1109/JRFID.2021.3101157
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2601644905</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9511624</ieee_id><sourcerecordid>2601644905</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-a07ac35bd8e61f34a05dd4d41d64eb4da9c3386f19332c0e7aab5899b8755403</originalsourceid><addsrcrecordid>eNpNkF9LwzAUxYMoOHRfQF8CPnfmb9s8zs3qZOKYA_EppEk6O7emJi3Db2_rhvh0D9xz7j38ALjCaIQxErdPy2w2HRFE8IhihDFPTsCAsFhECUnx6T99DoYhbBBCRHBMOR-A99XeRZm1Jlf6E86dq-HrR1s1cGnX7VY1zsM7FayBroKLt2e4zODC7a2HU9tY3a_H5a6s1rDvAMd1vS21akpXhUtwVqhtsMPjvACr7H41eYzmLw-zyXge6a5EEymUKE15blIb44IyhbgxzDBsYmZzZpTQlKZxgQWlRCObKJXzVIg8TThniF6Am8PZ2ruv1oZGblzrq-6jJDHCMWMC8c5FDi7tXQjeFrL25U75b4mR7CHKX4iyhyiPELvQ9SFUWmv_Ah05HBNGfwDuImuj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601644905</pqid></control><display><type>article</type><title>Two-Feedback Loop Shunt Regulator Based on PWM RF Power Detector Aiming RFID Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Cantalice, Rafael ; Cortes, Fernando Paixao ; Fabris, Eric Ericson ; Ferreira, Sandro Binsfeld ; Klimach, Hamilton</creator><creatorcontrib>Cantalice, Rafael ; Cortes, Fernando Paixao ; Fabris, Eric Ericson ; Ferreira, Sandro Binsfeld ; Klimach, Hamilton</creatorcontrib><description><![CDATA[The paper presents a novel shunt voltage regulation architecture that uses an RF power detector, based on Pulse Width Modulation (PWM) technique, aiming at magnetic coupled Radio-Frequency Identification (RFID) transponders. The proposed regulator architecture implements two feedback loops: a voltage clamping circuit that composes a fast correction loop and a slow but accurate power detector loop. The first clamping loop guarantees fast over-voltage protection, mainly in high RF power condition (short reading distance), but degrades power efficiency when in low power condition (large reading distance). The second loop corrects the imprecision of the first loop according to the detected RF input power. Therefore, it increases power efficiency and reading distance when in low RF power condition. The RF power detector architecture, based on a PWM technique, and the shunt regulator design are presented and discussed in detail. RFID power regulation issues are also discussed, followed by a brief review of RF power detector circuits. The complete regulator architecture was implemented in a 180nm CMOS low cost process and prototyped as part of a commercial low-frequency (134 kHz) RFID transponder. The complete transponder area is 870<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>870<inline-formula> <tex-math notation="LaTeX">\mu \text{m}^{2} </tex-math></inline-formula>, being 130<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>230<inline-formula> <tex-math notation="LaTeX">\mu \text{m}^{2} </tex-math></inline-formula> related to the regulator circuit only. Both resonant and supply capacitors are implemented on chip. The analog and digital functional blocks of the RFID system consume 4.5<inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula>. Performance of the transponder is measured with the shunt regulator enabled and compared with the power limiting approach using only clamping diodes. Measured results show an improvement of 16.7% in the maximum communication distance between the transponder and the reader because of the proposed regulation strategy.]]></description><identifier>ISSN: 2469-7281</identifier><identifier>EISSN: 2469-7281</identifier><identifier>EISSN: 2469-729X</identifier><identifier>DOI: 10.1109/JRFID.2021.3101157</identifier><identifier>CODEN: IJRFAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Clamping ; Clamping circuits ; Clamps ; CMOS ; Feedback loops ; Internet of Things ; IoT ; power detector ; Power efficiency ; power regulation ; Pulse duration modulation ; Pulse width modulation ; PWM power detector ; Radio frequency identification ; Radiofrequency identification ; RFID ; RFID tags ; Sensors ; Shunt regulator ; Transponders ; Voltage control</subject><ispartof>IEEE journal of radio frequency identification (Online), 2021-12, Vol.5 (4), p.387-396</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-a07ac35bd8e61f34a05dd4d41d64eb4da9c3386f19332c0e7aab5899b8755403</citedby><cites>FETCH-LOGICAL-c295t-a07ac35bd8e61f34a05dd4d41d64eb4da9c3386f19332c0e7aab5899b8755403</cites><orcidid>0000-0001-5920-2043 ; 0000-0003-3313-4059 ; 0000-0003-2692-9371 ; 0000-0002-8143-3179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9511624$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9511624$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cantalice, Rafael</creatorcontrib><creatorcontrib>Cortes, Fernando Paixao</creatorcontrib><creatorcontrib>Fabris, Eric Ericson</creatorcontrib><creatorcontrib>Ferreira, Sandro Binsfeld</creatorcontrib><creatorcontrib>Klimach, Hamilton</creatorcontrib><title>Two-Feedback Loop Shunt Regulator Based on PWM RF Power Detector Aiming RFID Applications</title><title>IEEE journal of radio frequency identification (Online)</title><addtitle>JRFID</addtitle><description><![CDATA[The paper presents a novel shunt voltage regulation architecture that uses an RF power detector, based on Pulse Width Modulation (PWM) technique, aiming at magnetic coupled Radio-Frequency Identification (RFID) transponders. The proposed regulator architecture implements two feedback loops: a voltage clamping circuit that composes a fast correction loop and a slow but accurate power detector loop. The first clamping loop guarantees fast over-voltage protection, mainly in high RF power condition (short reading distance), but degrades power efficiency when in low power condition (large reading distance). The second loop corrects the imprecision of the first loop according to the detected RF input power. Therefore, it increases power efficiency and reading distance when in low RF power condition. The RF power detector architecture, based on a PWM technique, and the shunt regulator design are presented and discussed in detail. RFID power regulation issues are also discussed, followed by a brief review of RF power detector circuits. The complete regulator architecture was implemented in a 180nm CMOS low cost process and prototyped as part of a commercial low-frequency (134 kHz) RFID transponder. The complete transponder area is 870<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>870<inline-formula> <tex-math notation="LaTeX">\mu \text{m}^{2} </tex-math></inline-formula>, being 130<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>230<inline-formula> <tex-math notation="LaTeX">\mu \text{m}^{2} </tex-math></inline-formula> related to the regulator circuit only. Both resonant and supply capacitors are implemented on chip. The analog and digital functional blocks of the RFID system consume 4.5<inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula>. Performance of the transponder is measured with the shunt regulator enabled and compared with the power limiting approach using only clamping diodes. Measured results show an improvement of 16.7% in the maximum communication distance between the transponder and the reader because of the proposed regulation strategy.]]></description><subject>Clamping</subject><subject>Clamping circuits</subject><subject>Clamps</subject><subject>CMOS</subject><subject>Feedback loops</subject><subject>Internet of Things</subject><subject>IoT</subject><subject>power detector</subject><subject>Power efficiency</subject><subject>power regulation</subject><subject>Pulse duration modulation</subject><subject>Pulse width modulation</subject><subject>PWM power detector</subject><subject>Radio frequency identification</subject><subject>Radiofrequency identification</subject><subject>RFID</subject><subject>RFID tags</subject><subject>Sensors</subject><subject>Shunt regulator</subject><subject>Transponders</subject><subject>Voltage control</subject><issn>2469-7281</issn><issn>2469-7281</issn><issn>2469-729X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF9LwzAUxYMoOHRfQF8CPnfmb9s8zs3qZOKYA_EppEk6O7emJi3Db2_rhvh0D9xz7j38ALjCaIQxErdPy2w2HRFE8IhihDFPTsCAsFhECUnx6T99DoYhbBBCRHBMOR-A99XeRZm1Jlf6E86dq-HrR1s1cGnX7VY1zsM7FayBroKLt2e4zODC7a2HU9tY3a_H5a6s1rDvAMd1vS21akpXhUtwVqhtsMPjvACr7H41eYzmLw-zyXge6a5EEymUKE15blIb44IyhbgxzDBsYmZzZpTQlKZxgQWlRCObKJXzVIg8TThniF6Am8PZ2ruv1oZGblzrq-6jJDHCMWMC8c5FDi7tXQjeFrL25U75b4mR7CHKX4iyhyiPELvQ9SFUWmv_Ah05HBNGfwDuImuj</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Cantalice, Rafael</creator><creator>Cortes, Fernando Paixao</creator><creator>Fabris, Eric Ericson</creator><creator>Ferreira, Sandro Binsfeld</creator><creator>Klimach, Hamilton</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5920-2043</orcidid><orcidid>https://orcid.org/0000-0003-3313-4059</orcidid><orcidid>https://orcid.org/0000-0003-2692-9371</orcidid><orcidid>https://orcid.org/0000-0002-8143-3179</orcidid></search><sort><creationdate>20211201</creationdate><title>Two-Feedback Loop Shunt Regulator Based on PWM RF Power Detector Aiming RFID Applications</title><author>Cantalice, Rafael ; Cortes, Fernando Paixao ; Fabris, Eric Ericson ; Ferreira, Sandro Binsfeld ; Klimach, Hamilton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-a07ac35bd8e61f34a05dd4d41d64eb4da9c3386f19332c0e7aab5899b8755403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clamping</topic><topic>Clamping circuits</topic><topic>Clamps</topic><topic>CMOS</topic><topic>Feedback loops</topic><topic>Internet of Things</topic><topic>IoT</topic><topic>power detector</topic><topic>Power efficiency</topic><topic>power regulation</topic><topic>Pulse duration modulation</topic><topic>Pulse width modulation</topic><topic>PWM power detector</topic><topic>Radio frequency identification</topic><topic>Radiofrequency identification</topic><topic>RFID</topic><topic>RFID tags</topic><topic>Sensors</topic><topic>Shunt regulator</topic><topic>Transponders</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cantalice, Rafael</creatorcontrib><creatorcontrib>Cortes, Fernando Paixao</creatorcontrib><creatorcontrib>Fabris, Eric Ericson</creatorcontrib><creatorcontrib>Ferreira, Sandro Binsfeld</creatorcontrib><creatorcontrib>Klimach, Hamilton</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of radio frequency identification (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cantalice, Rafael</au><au>Cortes, Fernando Paixao</au><au>Fabris, Eric Ericson</au><au>Ferreira, Sandro Binsfeld</au><au>Klimach, Hamilton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-Feedback Loop Shunt Regulator Based on PWM RF Power Detector Aiming RFID Applications</atitle><jtitle>IEEE journal of radio frequency identification (Online)</jtitle><stitle>JRFID</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>5</volume><issue>4</issue><spage>387</spage><epage>396</epage><pages>387-396</pages><issn>2469-7281</issn><eissn>2469-7281</eissn><eissn>2469-729X</eissn><coden>IJRFAF</coden><abstract><![CDATA[The paper presents a novel shunt voltage regulation architecture that uses an RF power detector, based on Pulse Width Modulation (PWM) technique, aiming at magnetic coupled Radio-Frequency Identification (RFID) transponders. The proposed regulator architecture implements two feedback loops: a voltage clamping circuit that composes a fast correction loop and a slow but accurate power detector loop. The first clamping loop guarantees fast over-voltage protection, mainly in high RF power condition (short reading distance), but degrades power efficiency when in low power condition (large reading distance). The second loop corrects the imprecision of the first loop according to the detected RF input power. Therefore, it increases power efficiency and reading distance when in low RF power condition. The RF power detector architecture, based on a PWM technique, and the shunt regulator design are presented and discussed in detail. RFID power regulation issues are also discussed, followed by a brief review of RF power detector circuits. The complete regulator architecture was implemented in a 180nm CMOS low cost process and prototyped as part of a commercial low-frequency (134 kHz) RFID transponder. The complete transponder area is 870<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>870<inline-formula> <tex-math notation="LaTeX">\mu \text{m}^{2} </tex-math></inline-formula>, being 130<inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula>230<inline-formula> <tex-math notation="LaTeX">\mu \text{m}^{2} </tex-math></inline-formula> related to the regulator circuit only. Both resonant and supply capacitors are implemented on chip. The analog and digital functional blocks of the RFID system consume 4.5<inline-formula> <tex-math notation="LaTeX">\mu \text{W} </tex-math></inline-formula>. Performance of the transponder is measured with the shunt regulator enabled and compared with the power limiting approach using only clamping diodes. Measured results show an improvement of 16.7% in the maximum communication distance between the transponder and the reader because of the proposed regulation strategy.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JRFID.2021.3101157</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5920-2043</orcidid><orcidid>https://orcid.org/0000-0003-3313-4059</orcidid><orcidid>https://orcid.org/0000-0003-2692-9371</orcidid><orcidid>https://orcid.org/0000-0002-8143-3179</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2469-7281
ispartof IEEE journal of radio frequency identification (Online), 2021-12, Vol.5 (4), p.387-396
issn 2469-7281
2469-7281
2469-729X
language eng
recordid cdi_proquest_journals_2601644905
source IEEE Electronic Library (IEL)
subjects Clamping
Clamping circuits
Clamps
CMOS
Feedback loops
Internet of Things
IoT
power detector
Power efficiency
power regulation
Pulse duration modulation
Pulse width modulation
PWM power detector
Radio frequency identification
Radiofrequency identification
RFID
RFID tags
Sensors
Shunt regulator
Transponders
Voltage control
title Two-Feedback Loop Shunt Regulator Based on PWM RF Power Detector Aiming RFID Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-Feedback%20Loop%20Shunt%20Regulator%20Based%20on%20PWM%20RF%20Power%20Detector%20Aiming%20RFID%20Applications&rft.jtitle=IEEE%20journal%20of%20radio%20frequency%20identification%20(Online)&rft.au=Cantalice,%20Rafael&rft.date=2021-12-01&rft.volume=5&rft.issue=4&rft.spage=387&rft.epage=396&rft.pages=387-396&rft.issn=2469-7281&rft.eissn=2469-7281&rft.coden=IJRFAF&rft_id=info:doi/10.1109/JRFID.2021.3101157&rft_dat=%3Cproquest_RIE%3E2601644905%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601644905&rft_id=info:pmid/&rft_ieee_id=9511624&rfr_iscdi=true