Real‐time interactive artificial intelligence of things–based prediction for adverse outcomes in adult patients with pneumonia in the emergency department
Background Artificial intelligence of things (AIoT) may be a solution for predicting adverse outcomes in emergency department (ED) patients with pneumonia; however, this issue remains unclear. Therefore, we conducted this study to clarify it. Methods We identified 52,626 adult ED patients with pneum...
Gespeichert in:
Veröffentlicht in: | Academic emergency medicine 2021-11, Vol.28 (11), p.1277-1285 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1285 |
---|---|
container_issue | 11 |
container_start_page | 1277 |
container_title | Academic emergency medicine |
container_volume | 28 |
creator | Chen, You‐Ming Kao, Yuan Hsu, Chien‐Chin Chen, Chia‐Jung Ma, Yu‐Shan Shen, Yu‐Ting Liu, Tzu‐Lan Hsu, Shu‐Lien Lin, Hung‐Jung Wang, Jhi‐Joung Huang, Chien‐Cheng Liu, Chung‐Feng |
description | Background
Artificial intelligence of things (AIoT) may be a solution for predicting adverse outcomes in emergency department (ED) patients with pneumonia; however, this issue remains unclear. Therefore, we conducted this study to clarify it.
Methods
We identified 52,626 adult ED patients with pneumonia from three hospitals between 2010 and 2019 for this study. Thirty‐three feature variables from electronic medical records were used to construct an artificial intelligence (AI) model to predict sepsis or septic shock, respiratory failure, and mortality. After comparisons of the predictive accuracies among logistic regression, random forest, support‐vector machine (SVM), light gradient boosting machine (LightGBM), multilayer perceptron (MLP), and eXtreme Gradient Boosting (XGBoost), we selected the best one to build the model. We further combined the AI model with the Internet of things as AIoT, added an interactive mode, and implemented it in the hospital information system to assist clinicians with decision making in real time. We also compared the AIoT‐based model with the confusion‐urea‐respiratory rate‐blood pressure‐65 (CURB‐65) and pneumonia severity index (PSI) for predicting mortality.
Results
The best AI algorithms were random forest for sepsis or septic shock (area under the curve [AUC] = 0.781), LightGBM for respiratory failure (AUC = 0.847), and mortality (AUC = 0.835). The AIoT‐based model represented better performance than CURB‐65 and PSI indicators for predicting mortality (0.835 vs. 0.681 and 0.835 vs. 0.728).
Conclusions
A real‐time interactive AIoT‐based model might be a better tool for predicting adverse outcomes in ED patients with pneumonia. Further validation in other populations is warranted. |
doi_str_mv | 10.1111/acem.14339 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2601610453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2601610453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3939-e95723597ba91359bdb9814011f7326ab770753708f7c7745e46258c394f7c03</originalsourceid><addsrcrecordid>eNp9kc1KAzEUhYMotv5sfAAJuBNGk8lk0ixLqT-gCOJ-yMzcaVPmzyTT0l0fQXDvw_VJzNjq0mxuOHznXLgHoQtKbqh_tyqD6oZGjMkDNKScsyAUNDz0fxLLIOYxG6ATaxeEEC6kOEYDFrEwElwO0dcrqHK7-XC6AqxrB0ZlTi8BK-N0oTOtyh-5LPUM6gxwU2A31_XMbjefqbKQ49ZArr2pqXHRGKzyJRjrwc5lTQXW273WlQ63ymmoncUr7ea4raGrmlqrHnBzwFCB6XescQ6tX1959gwdFaq0cL6fp-jtbvo2eQieXu4fJ-OnIGOSyQAkFyHjUqRKUj_TPJUjGhFKC8HCWKVCEMGZIKNCZEJEHKI45CNvjrxA2Cm62sW2pnnvwLpk0XSm9huTMCY0piTizFPXOyozjbUGiqQ1ulJmnVCS9E0kfRPJTxMevtxHdmkF-R_6e3oP0B2w0iWs_4lKxpPp8y70G35pl88</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601610453</pqid></control><display><type>article</type><title>Real‐time interactive artificial intelligence of things–based prediction for adverse outcomes in adult patients with pneumonia in the emergency department</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chen, You‐Ming ; Kao, Yuan ; Hsu, Chien‐Chin ; Chen, Chia‐Jung ; Ma, Yu‐Shan ; Shen, Yu‐Ting ; Liu, Tzu‐Lan ; Hsu, Shu‐Lien ; Lin, Hung‐Jung ; Wang, Jhi‐Joung ; Huang, Chien‐Cheng ; Liu, Chung‐Feng</creator><creatorcontrib>Chen, You‐Ming ; Kao, Yuan ; Hsu, Chien‐Chin ; Chen, Chia‐Jung ; Ma, Yu‐Shan ; Shen, Yu‐Ting ; Liu, Tzu‐Lan ; Hsu, Shu‐Lien ; Lin, Hung‐Jung ; Wang, Jhi‐Joung ; Huang, Chien‐Cheng ; Liu, Chung‐Feng</creatorcontrib><description>Background
Artificial intelligence of things (AIoT) may be a solution for predicting adverse outcomes in emergency department (ED) patients with pneumonia; however, this issue remains unclear. Therefore, we conducted this study to clarify it.
Methods
We identified 52,626 adult ED patients with pneumonia from three hospitals between 2010 and 2019 for this study. Thirty‐three feature variables from electronic medical records were used to construct an artificial intelligence (AI) model to predict sepsis or septic shock, respiratory failure, and mortality. After comparisons of the predictive accuracies among logistic regression, random forest, support‐vector machine (SVM), light gradient boosting machine (LightGBM), multilayer perceptron (MLP), and eXtreme Gradient Boosting (XGBoost), we selected the best one to build the model. We further combined the AI model with the Internet of things as AIoT, added an interactive mode, and implemented it in the hospital information system to assist clinicians with decision making in real time. We also compared the AIoT‐based model with the confusion‐urea‐respiratory rate‐blood pressure‐65 (CURB‐65) and pneumonia severity index (PSI) for predicting mortality.
Results
The best AI algorithms were random forest for sepsis or septic shock (area under the curve [AUC] = 0.781), LightGBM for respiratory failure (AUC = 0.847), and mortality (AUC = 0.835). The AIoT‐based model represented better performance than CURB‐65 and PSI indicators for predicting mortality (0.835 vs. 0.681 and 0.835 vs. 0.728).
Conclusions
A real‐time interactive AIoT‐based model might be a better tool for predicting adverse outcomes in ED patients with pneumonia. Further validation in other populations is warranted.</description><identifier>ISSN: 1069-6563</identifier><identifier>EISSN: 1553-2712</identifier><identifier>DOI: 10.1111/acem.14339</identifier><identifier>PMID: 34324759</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Adult ; adverse outcome ; Artificial Intelligence ; Clinical outcomes ; emergency department ; Emergency medical care ; Emergency Service, Hospital ; Humans ; interactive ; internet of things ; Logistic Models ; Medical prognosis ; Mortality ; Pneumonia ; Pneumonia - diagnosis ; Respiratory failure ; Retrospective Studies ; Sepsis</subject><ispartof>Academic emergency medicine, 2021-11, Vol.28 (11), p.1277-1285</ispartof><rights>2021 by the Society for Academic Emergency Medicine</rights><rights>2021 by the Society for Academic Emergency Medicine.</rights><rights>Copyright © 2021 Society for Academic Emergency Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3939-e95723597ba91359bdb9814011f7326ab770753708f7c7745e46258c394f7c03</citedby><cites>FETCH-LOGICAL-c3939-e95723597ba91359bdb9814011f7326ab770753708f7c7745e46258c394f7c03</cites><orcidid>0000-0002-7542-0152 ; 0000-0003-3595-2952</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Facem.14339$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Facem.14339$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27903,27904,45553,45554,46387,46811</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34324759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, You‐Ming</creatorcontrib><creatorcontrib>Kao, Yuan</creatorcontrib><creatorcontrib>Hsu, Chien‐Chin</creatorcontrib><creatorcontrib>Chen, Chia‐Jung</creatorcontrib><creatorcontrib>Ma, Yu‐Shan</creatorcontrib><creatorcontrib>Shen, Yu‐Ting</creatorcontrib><creatorcontrib>Liu, Tzu‐Lan</creatorcontrib><creatorcontrib>Hsu, Shu‐Lien</creatorcontrib><creatorcontrib>Lin, Hung‐Jung</creatorcontrib><creatorcontrib>Wang, Jhi‐Joung</creatorcontrib><creatorcontrib>Huang, Chien‐Cheng</creatorcontrib><creatorcontrib>Liu, Chung‐Feng</creatorcontrib><title>Real‐time interactive artificial intelligence of things–based prediction for adverse outcomes in adult patients with pneumonia in the emergency department</title><title>Academic emergency medicine</title><addtitle>Acad Emerg Med</addtitle><description>Background
Artificial intelligence of things (AIoT) may be a solution for predicting adverse outcomes in emergency department (ED) patients with pneumonia; however, this issue remains unclear. Therefore, we conducted this study to clarify it.
Methods
We identified 52,626 adult ED patients with pneumonia from three hospitals between 2010 and 2019 for this study. Thirty‐three feature variables from electronic medical records were used to construct an artificial intelligence (AI) model to predict sepsis or septic shock, respiratory failure, and mortality. After comparisons of the predictive accuracies among logistic regression, random forest, support‐vector machine (SVM), light gradient boosting machine (LightGBM), multilayer perceptron (MLP), and eXtreme Gradient Boosting (XGBoost), we selected the best one to build the model. We further combined the AI model with the Internet of things as AIoT, added an interactive mode, and implemented it in the hospital information system to assist clinicians with decision making in real time. We also compared the AIoT‐based model with the confusion‐urea‐respiratory rate‐blood pressure‐65 (CURB‐65) and pneumonia severity index (PSI) for predicting mortality.
Results
The best AI algorithms were random forest for sepsis or septic shock (area under the curve [AUC] = 0.781), LightGBM for respiratory failure (AUC = 0.847), and mortality (AUC = 0.835). The AIoT‐based model represented better performance than CURB‐65 and PSI indicators for predicting mortality (0.835 vs. 0.681 and 0.835 vs. 0.728).
Conclusions
A real‐time interactive AIoT‐based model might be a better tool for predicting adverse outcomes in ED patients with pneumonia. Further validation in other populations is warranted.</description><subject>Adult</subject><subject>adverse outcome</subject><subject>Artificial Intelligence</subject><subject>Clinical outcomes</subject><subject>emergency department</subject><subject>Emergency medical care</subject><subject>Emergency Service, Hospital</subject><subject>Humans</subject><subject>interactive</subject><subject>internet of things</subject><subject>Logistic Models</subject><subject>Medical prognosis</subject><subject>Mortality</subject><subject>Pneumonia</subject><subject>Pneumonia - diagnosis</subject><subject>Respiratory failure</subject><subject>Retrospective Studies</subject><subject>Sepsis</subject><issn>1069-6563</issn><issn>1553-2712</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1KAzEUhYMotv5sfAAJuBNGk8lk0ixLqT-gCOJ-yMzcaVPmzyTT0l0fQXDvw_VJzNjq0mxuOHznXLgHoQtKbqh_tyqD6oZGjMkDNKScsyAUNDz0fxLLIOYxG6ATaxeEEC6kOEYDFrEwElwO0dcrqHK7-XC6AqxrB0ZlTi8BK-N0oTOtyh-5LPUM6gxwU2A31_XMbjefqbKQ49ZArr2pqXHRGKzyJRjrwc5lTQXW273WlQ63ymmoncUr7ea4raGrmlqrHnBzwFCB6XescQ6tX1959gwdFaq0cL6fp-jtbvo2eQieXu4fJ-OnIGOSyQAkFyHjUqRKUj_TPJUjGhFKC8HCWKVCEMGZIKNCZEJEHKI45CNvjrxA2Cm62sW2pnnvwLpk0XSm9huTMCY0piTizFPXOyozjbUGiqQ1ulJmnVCS9E0kfRPJTxMevtxHdmkF-R_6e3oP0B2w0iWs_4lKxpPp8y70G35pl88</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Chen, You‐Ming</creator><creator>Kao, Yuan</creator><creator>Hsu, Chien‐Chin</creator><creator>Chen, Chia‐Jung</creator><creator>Ma, Yu‐Shan</creator><creator>Shen, Yu‐Ting</creator><creator>Liu, Tzu‐Lan</creator><creator>Hsu, Shu‐Lien</creator><creator>Lin, Hung‐Jung</creator><creator>Wang, Jhi‐Joung</creator><creator>Huang, Chien‐Cheng</creator><creator>Liu, Chung‐Feng</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>U9A</scope><orcidid>https://orcid.org/0000-0002-7542-0152</orcidid><orcidid>https://orcid.org/0000-0003-3595-2952</orcidid></search><sort><creationdate>202111</creationdate><title>Real‐time interactive artificial intelligence of things–based prediction for adverse outcomes in adult patients with pneumonia in the emergency department</title><author>Chen, You‐Ming ; Kao, Yuan ; Hsu, Chien‐Chin ; Chen, Chia‐Jung ; Ma, Yu‐Shan ; Shen, Yu‐Ting ; Liu, Tzu‐Lan ; Hsu, Shu‐Lien ; Lin, Hung‐Jung ; Wang, Jhi‐Joung ; Huang, Chien‐Cheng ; Liu, Chung‐Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3939-e95723597ba91359bdb9814011f7326ab770753708f7c7745e46258c394f7c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adult</topic><topic>adverse outcome</topic><topic>Artificial Intelligence</topic><topic>Clinical outcomes</topic><topic>emergency department</topic><topic>Emergency medical care</topic><topic>Emergency Service, Hospital</topic><topic>Humans</topic><topic>interactive</topic><topic>internet of things</topic><topic>Logistic Models</topic><topic>Medical prognosis</topic><topic>Mortality</topic><topic>Pneumonia</topic><topic>Pneumonia - diagnosis</topic><topic>Respiratory failure</topic><topic>Retrospective Studies</topic><topic>Sepsis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, You‐Ming</creatorcontrib><creatorcontrib>Kao, Yuan</creatorcontrib><creatorcontrib>Hsu, Chien‐Chin</creatorcontrib><creatorcontrib>Chen, Chia‐Jung</creatorcontrib><creatorcontrib>Ma, Yu‐Shan</creatorcontrib><creatorcontrib>Shen, Yu‐Ting</creatorcontrib><creatorcontrib>Liu, Tzu‐Lan</creatorcontrib><creatorcontrib>Hsu, Shu‐Lien</creatorcontrib><creatorcontrib>Lin, Hung‐Jung</creatorcontrib><creatorcontrib>Wang, Jhi‐Joung</creatorcontrib><creatorcontrib>Huang, Chien‐Cheng</creatorcontrib><creatorcontrib>Liu, Chung‐Feng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><jtitle>Academic emergency medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, You‐Ming</au><au>Kao, Yuan</au><au>Hsu, Chien‐Chin</au><au>Chen, Chia‐Jung</au><au>Ma, Yu‐Shan</au><au>Shen, Yu‐Ting</au><au>Liu, Tzu‐Lan</au><au>Hsu, Shu‐Lien</au><au>Lin, Hung‐Jung</au><au>Wang, Jhi‐Joung</au><au>Huang, Chien‐Cheng</au><au>Liu, Chung‐Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real‐time interactive artificial intelligence of things–based prediction for adverse outcomes in adult patients with pneumonia in the emergency department</atitle><jtitle>Academic emergency medicine</jtitle><addtitle>Acad Emerg Med</addtitle><date>2021-11</date><risdate>2021</risdate><volume>28</volume><issue>11</issue><spage>1277</spage><epage>1285</epage><pages>1277-1285</pages><issn>1069-6563</issn><eissn>1553-2712</eissn><abstract>Background
Artificial intelligence of things (AIoT) may be a solution for predicting adverse outcomes in emergency department (ED) patients with pneumonia; however, this issue remains unclear. Therefore, we conducted this study to clarify it.
Methods
We identified 52,626 adult ED patients with pneumonia from three hospitals between 2010 and 2019 for this study. Thirty‐three feature variables from electronic medical records were used to construct an artificial intelligence (AI) model to predict sepsis or septic shock, respiratory failure, and mortality. After comparisons of the predictive accuracies among logistic regression, random forest, support‐vector machine (SVM), light gradient boosting machine (LightGBM), multilayer perceptron (MLP), and eXtreme Gradient Boosting (XGBoost), we selected the best one to build the model. We further combined the AI model with the Internet of things as AIoT, added an interactive mode, and implemented it in the hospital information system to assist clinicians with decision making in real time. We also compared the AIoT‐based model with the confusion‐urea‐respiratory rate‐blood pressure‐65 (CURB‐65) and pneumonia severity index (PSI) for predicting mortality.
Results
The best AI algorithms were random forest for sepsis or septic shock (area under the curve [AUC] = 0.781), LightGBM for respiratory failure (AUC = 0.847), and mortality (AUC = 0.835). The AIoT‐based model represented better performance than CURB‐65 and PSI indicators for predicting mortality (0.835 vs. 0.681 and 0.835 vs. 0.728).
Conclusions
A real‐time interactive AIoT‐based model might be a better tool for predicting adverse outcomes in ED patients with pneumonia. Further validation in other populations is warranted.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34324759</pmid><doi>10.1111/acem.14339</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7542-0152</orcidid><orcidid>https://orcid.org/0000-0003-3595-2952</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1069-6563 |
ispartof | Academic emergency medicine, 2021-11, Vol.28 (11), p.1277-1285 |
issn | 1069-6563 1553-2712 |
language | eng |
recordid | cdi_proquest_journals_2601610453 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Adult adverse outcome Artificial Intelligence Clinical outcomes emergency department Emergency medical care Emergency Service, Hospital Humans interactive internet of things Logistic Models Medical prognosis Mortality Pneumonia Pneumonia - diagnosis Respiratory failure Retrospective Studies Sepsis |
title | Real‐time interactive artificial intelligence of things–based prediction for adverse outcomes in adult patients with pneumonia in the emergency department |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A27%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%E2%80%90time%20interactive%20artificial%20intelligence%20of%20things%E2%80%93based%20prediction%20for%20adverse%20outcomes%20in%20adult%20patients%20with%20pneumonia%20in%20the%20emergency%20department&rft.jtitle=Academic%20emergency%20medicine&rft.au=Chen,%20You%E2%80%90Ming&rft.date=2021-11&rft.volume=28&rft.issue=11&rft.spage=1277&rft.epage=1285&rft.pages=1277-1285&rft.issn=1069-6563&rft.eissn=1553-2712&rft_id=info:doi/10.1111/acem.14339&rft_dat=%3Cproquest_cross%3E2601610453%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601610453&rft_id=info:pmid/34324759&rfr_iscdi=true |