Topological mirror symmetry for rank two character varieties of surface groups
The moduli spaces of flat SL 2 - and PGL 2 -connections are known to be singular SYZ-mirror partners. We establish the equality of Hodge numbers of their intersection (stringy) cohomology. In rank two, this answers a question raised by Tamás Hausel in Remark 3.30 of “Global topology of the Hitchin s...
Gespeichert in:
Veröffentlicht in: | Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 2021-10, Vol.91 (2), p.297-303 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 303 |
---|---|
container_issue | 2 |
container_start_page | 297 |
container_title | Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg |
container_volume | 91 |
creator | Mauri, Mirko |
description | The moduli spaces of flat
SL
2
- and
PGL
2
-connections are known to be singular SYZ-mirror partners. We establish the equality of Hodge numbers of their intersection (stringy) cohomology. In rank two, this answers a question raised by Tamás Hausel in Remark 3.30 of “Global topology of the Hitchin system”. |
doi_str_mv | 10.1007/s12188-021-00246-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2601564273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2601564273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-3db861b25cb4fb515a9f164e4c59380b60f48aa20db631beb6c5decb9a82fd4d3</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWC8v4CrgOpp706UUb1B0U9chySR1aqcZT2aUeXtHR3Dn6nAO3_8f-BC6YPSKUTq_LowzYwjljFDKpSbDAZoxoxUxcyMP0Wy8KqKMMsfopJQtpZoLLWfoaZ3bvMubOrgdbmqADLgMTRM7GHAaF3D7N9x9ZhxeHbjQRcAfDurY1bHgnHDpIbkQ8QZy35YzdJTcrsTz33mKXu5u18sHsnq-f1zerEgQWnREVN5o5rkKXiavmHKLxLSMMqiFMNRrmqRxjtPKa8F89DqoKga_cIanSlbiFF1OvS3k9z6Wzm5zD_vxpeWaMqUln4uR4hMVIJcCMdkW6sbBYBm1397s5M2O3uyPNzuMITGFygjvNxH-qv9JfQHyWHKd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601564273</pqid></control><display><type>article</type><title>Topological mirror symmetry for rank two character varieties of surface groups</title><source>SpringerLink Journals</source><creator>Mauri, Mirko</creator><creatorcontrib>Mauri, Mirko</creatorcontrib><description>The moduli spaces of flat
SL
2
- and
PGL
2
-connections are known to be singular SYZ-mirror partners. We establish the equality of Hodge numbers of their intersection (stringy) cohomology. In rank two, this answers a question raised by Tamás Hausel in Remark 3.30 of “Global topology of the Hitchin system”.</description><identifier>ISSN: 0025-5858</identifier><identifier>EISSN: 1865-8784</identifier><identifier>DOI: 10.1007/s12188-021-00246-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Differential Geometry ; Geometry ; Homology ; Mathematics ; Mathematics and Statistics ; Number Theory ; Topology</subject><ispartof>Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2021-10, Vol.91 (2), p.297-303</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-3db861b25cb4fb515a9f164e4c59380b60f48aa20db631beb6c5decb9a82fd4d3</citedby><cites>FETCH-LOGICAL-c363t-3db861b25cb4fb515a9f164e4c59380b60f48aa20db631beb6c5decb9a82fd4d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12188-021-00246-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12188-021-00246-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mauri, Mirko</creatorcontrib><title>Topological mirror symmetry for rank two character varieties of surface groups</title><title>Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg</title><addtitle>Abh. Math. Semin. Univ. Hambg</addtitle><description>The moduli spaces of flat
SL
2
- and
PGL
2
-connections are known to be singular SYZ-mirror partners. We establish the equality of Hodge numbers of their intersection (stringy) cohomology. In rank two, this answers a question raised by Tamás Hausel in Remark 3.30 of “Global topology of the Hitchin system”.</description><subject>Algebra</subject><subject>Differential Geometry</subject><subject>Geometry</subject><subject>Homology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><subject>Topology</subject><issn>0025-5858</issn><issn>1865-8784</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMtKAzEUhoMoWC8v4CrgOpp706UUb1B0U9chySR1aqcZT2aUeXtHR3Dn6nAO3_8f-BC6YPSKUTq_LowzYwjljFDKpSbDAZoxoxUxcyMP0Wy8KqKMMsfopJQtpZoLLWfoaZ3bvMubOrgdbmqADLgMTRM7GHAaF3D7N9x9ZhxeHbjQRcAfDurY1bHgnHDpIbkQ8QZy35YzdJTcrsTz33mKXu5u18sHsnq-f1zerEgQWnREVN5o5rkKXiavmHKLxLSMMqiFMNRrmqRxjtPKa8F89DqoKga_cIanSlbiFF1OvS3k9z6Wzm5zD_vxpeWaMqUln4uR4hMVIJcCMdkW6sbBYBm1397s5M2O3uyPNzuMITGFygjvNxH-qv9JfQHyWHKd</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Mauri, Mirko</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211001</creationdate><title>Topological mirror symmetry for rank two character varieties of surface groups</title><author>Mauri, Mirko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-3db861b25cb4fb515a9f164e4c59380b60f48aa20db631beb6c5decb9a82fd4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Differential Geometry</topic><topic>Geometry</topic><topic>Homology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mauri, Mirko</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mauri, Mirko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological mirror symmetry for rank two character varieties of surface groups</atitle><jtitle>Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg</jtitle><stitle>Abh. Math. Semin. Univ. Hambg</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>91</volume><issue>2</issue><spage>297</spage><epage>303</epage><pages>297-303</pages><issn>0025-5858</issn><eissn>1865-8784</eissn><abstract>The moduli spaces of flat
SL
2
- and
PGL
2
-connections are known to be singular SYZ-mirror partners. We establish the equality of Hodge numbers of their intersection (stringy) cohomology. In rank two, this answers a question raised by Tamás Hausel in Remark 3.30 of “Global topology of the Hitchin system”.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12188-021-00246-y</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5858 |
ispartof | Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2021-10, Vol.91 (2), p.297-303 |
issn | 0025-5858 1865-8784 |
language | eng |
recordid | cdi_proquest_journals_2601564273 |
source | SpringerLink Journals |
subjects | Algebra Differential Geometry Geometry Homology Mathematics Mathematics and Statistics Number Theory Topology |
title | Topological mirror symmetry for rank two character varieties of surface groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20mirror%20symmetry%20for%20rank%20two%20character%20varieties%20of%20surface%20groups&rft.jtitle=Abhandlungen%20aus%20dem%20Mathematischen%20Seminar%20der%20Universita%CC%88t%20Hamburg&rft.au=Mauri,%20Mirko&rft.date=2021-10-01&rft.volume=91&rft.issue=2&rft.spage=297&rft.epage=303&rft.pages=297-303&rft.issn=0025-5858&rft.eissn=1865-8784&rft_id=info:doi/10.1007/s12188-021-00246-y&rft_dat=%3Cproquest_cross%3E2601564273%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601564273&rft_id=info:pmid/&rfr_iscdi=true |