Validation Is Like Motor Oil: Synthetic Is Better

Although synthetic validation has long been suggested as a practical and defensible approach to establishing validity evidence, synthetic validation techniques are infrequently used and not well understood by the practitioners and researchers they could most benefit. Therefore, we describe the assum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Industrial and organizational psychology 2010-09, Vol.3 (3), p.305-328
Hauptverfasser: Johnson, Jeff W., Steel, Piers, Scherbaum, Charles A., Hoffman, Calvin C., Richard Jeanneret, P., Foster, Jeff
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 328
container_issue 3
container_start_page 305
container_title Industrial and organizational psychology
container_volume 3
creator Johnson, Jeff W.
Steel, Piers
Scherbaum, Charles A.
Hoffman, Calvin C.
Richard Jeanneret, P.
Foster, Jeff
description Although synthetic validation has long been suggested as a practical and defensible approach to establishing validity evidence, synthetic validation techniques are infrequently used and not well understood by the practitioners and researchers they could most benefit. Therefore, we describe the assumptions, origins, and methods for establishing validity evidence of the two primary types of synthetic validation techniques: (a) job component validity and (b) job requirements matrix. We then present the case for synthetic validation as the best approach for many situations and address the potential limitations of synthetic validation. We conclude by proposing the development of a comprehensive database to build prediction equations for use in synthetic validation of jobs across the U.S. economy and reviewing potential obstacles to the creation of such a database. We maintain that synthetic validation is a practically useful methodology that has great potential to advance the science and practice of industrial and organizational psychology.
doi_str_mv 10.1017/S1754942600002479
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2601168473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1754942600002479</cupid><sourcerecordid>2601168473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1623-9980658a94a604674f4ef622255d8b054eb6c7f874cc54243dcd451bbc3d1dd23</originalsourceid><addsrcrecordid>eNp1UDtPwzAQthBIlMIPYIvEHPDjbMdsUFGoVNShwBo5tgMuaVJsd-i_J1ErGBC33Onue-g-hC4JviaYyJslkRwUUIH7oiDVERoNq1wBg-OfmYpTdBbjCmPBKIYRIm-68VYn37XZLGZz_-my5y51IVv45jZb7tr04ZI3w_HepeTCOTqpdRPdxaGP0ev04WXylM8Xj7PJ3Tw3RFCWK1VgwQutQAsMQkINrhaUUs5tUWEOrhJG1oUEYzhQYNZY4KSqDLPEWsrG6Gqvuwnd19bFVK66bWh7y7L_khBRgGQ9iuxRJnQxBleXm-DXOuxKgsshmfJPMj2HHTh6XQVv392v9P-sb9S3YhI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601168473</pqid></control><display><type>article</type><title>Validation Is Like Motor Oil: Synthetic Is Better</title><source>Cambridge Journals</source><source>Wiley Online Library All Journals</source><creator>Johnson, Jeff W. ; Steel, Piers ; Scherbaum, Charles A. ; Hoffman, Calvin C. ; Richard Jeanneret, P. ; Foster, Jeff</creator><creatorcontrib>Johnson, Jeff W. ; Steel, Piers ; Scherbaum, Charles A. ; Hoffman, Calvin C. ; Richard Jeanneret, P. ; Foster, Jeff</creatorcontrib><description>Although synthetic validation has long been suggested as a practical and defensible approach to establishing validity evidence, synthetic validation techniques are infrequently used and not well understood by the practitioners and researchers they could most benefit. Therefore, we describe the assumptions, origins, and methods for establishing validity evidence of the two primary types of synthetic validation techniques: (a) job component validity and (b) job requirements matrix. We then present the case for synthetic validation as the best approach for many situations and address the potential limitations of synthetic validation. We conclude by proposing the development of a comprehensive database to build prediction equations for use in synthetic validation of jobs across the U.S. economy and reviewing potential obstacles to the creation of such a database. We maintain that synthetic validation is a practically useful methodology that has great potential to advance the science and practice of industrial and organizational psychology.</description><identifier>ISSN: 1754-9426</identifier><identifier>EISSN: 1754-9434</identifier><identifier>DOI: 10.1017/S1754942600002479</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Focal Article ; Validity</subject><ispartof>Industrial and organizational psychology, 2010-09, Vol.3 (3), p.305-328</ispartof><rights>Copyright © Society for Industrial and Organizational Psychology 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1623-9980658a94a604674f4ef622255d8b054eb6c7f874cc54243dcd451bbc3d1dd23</citedby><cites>FETCH-LOGICAL-c1623-9980658a94a604674f4ef622255d8b054eb6c7f874cc54243dcd451bbc3d1dd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1754942600002479/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Johnson, Jeff W.</creatorcontrib><creatorcontrib>Steel, Piers</creatorcontrib><creatorcontrib>Scherbaum, Charles A.</creatorcontrib><creatorcontrib>Hoffman, Calvin C.</creatorcontrib><creatorcontrib>Richard Jeanneret, P.</creatorcontrib><creatorcontrib>Foster, Jeff</creatorcontrib><title>Validation Is Like Motor Oil: Synthetic Is Better</title><title>Industrial and organizational psychology</title><addtitle>Ind. organ. psychol</addtitle><description>Although synthetic validation has long been suggested as a practical and defensible approach to establishing validity evidence, synthetic validation techniques are infrequently used and not well understood by the practitioners and researchers they could most benefit. Therefore, we describe the assumptions, origins, and methods for establishing validity evidence of the two primary types of synthetic validation techniques: (a) job component validity and (b) job requirements matrix. We then present the case for synthetic validation as the best approach for many situations and address the potential limitations of synthetic validation. We conclude by proposing the development of a comprehensive database to build prediction equations for use in synthetic validation of jobs across the U.S. economy and reviewing potential obstacles to the creation of such a database. We maintain that synthetic validation is a practically useful methodology that has great potential to advance the science and practice of industrial and organizational psychology.</description><subject>Focal Article</subject><subject>Validity</subject><issn>1754-9426</issn><issn>1754-9434</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1UDtPwzAQthBIlMIPYIvEHPDjbMdsUFGoVNShwBo5tgMuaVJsd-i_J1ErGBC33Onue-g-hC4JviaYyJslkRwUUIH7oiDVERoNq1wBg-OfmYpTdBbjCmPBKIYRIm-68VYn37XZLGZz_-my5y51IVv45jZb7tr04ZI3w_HepeTCOTqpdRPdxaGP0ev04WXylM8Xj7PJ3Tw3RFCWK1VgwQutQAsMQkINrhaUUs5tUWEOrhJG1oUEYzhQYNZY4KSqDLPEWsrG6Gqvuwnd19bFVK66bWh7y7L_khBRgGQ9iuxRJnQxBleXm-DXOuxKgsshmfJPMj2HHTh6XQVv392v9P-sb9S3YhI</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Johnson, Jeff W.</creator><creator>Steel, Piers</creator><creator>Scherbaum, Charles A.</creator><creator>Hoffman, Calvin C.</creator><creator>Richard Jeanneret, P.</creator><creator>Foster, Jeff</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201009</creationdate><title>Validation Is Like Motor Oil: Synthetic Is Better</title><author>Johnson, Jeff W. ; Steel, Piers ; Scherbaum, Charles A. ; Hoffman, Calvin C. ; Richard Jeanneret, P. ; Foster, Jeff</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1623-9980658a94a604674f4ef622255d8b054eb6c7f874cc54243dcd451bbc3d1dd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Focal Article</topic><topic>Validity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Jeff W.</creatorcontrib><creatorcontrib>Steel, Piers</creatorcontrib><creatorcontrib>Scherbaum, Charles A.</creatorcontrib><creatorcontrib>Hoffman, Calvin C.</creatorcontrib><creatorcontrib>Richard Jeanneret, P.</creatorcontrib><creatorcontrib>Foster, Jeff</creatorcontrib><collection>CrossRef</collection><jtitle>Industrial and organizational psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Jeff W.</au><au>Steel, Piers</au><au>Scherbaum, Charles A.</au><au>Hoffman, Calvin C.</au><au>Richard Jeanneret, P.</au><au>Foster, Jeff</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Validation Is Like Motor Oil: Synthetic Is Better</atitle><jtitle>Industrial and organizational psychology</jtitle><addtitle>Ind. organ. psychol</addtitle><date>2010-09</date><risdate>2010</risdate><volume>3</volume><issue>3</issue><spage>305</spage><epage>328</epage><pages>305-328</pages><issn>1754-9426</issn><eissn>1754-9434</eissn><abstract>Although synthetic validation has long been suggested as a practical and defensible approach to establishing validity evidence, synthetic validation techniques are infrequently used and not well understood by the practitioners and researchers they could most benefit. Therefore, we describe the assumptions, origins, and methods for establishing validity evidence of the two primary types of synthetic validation techniques: (a) job component validity and (b) job requirements matrix. We then present the case for synthetic validation as the best approach for many situations and address the potential limitations of synthetic validation. We conclude by proposing the development of a comprehensive database to build prediction equations for use in synthetic validation of jobs across the U.S. economy and reviewing potential obstacles to the creation of such a database. We maintain that synthetic validation is a practically useful methodology that has great potential to advance the science and practice of industrial and organizational psychology.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S1754942600002479</doi><tpages>24</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-9426
ispartof Industrial and organizational psychology, 2010-09, Vol.3 (3), p.305-328
issn 1754-9426
1754-9434
language eng
recordid cdi_proquest_journals_2601168473
source Cambridge Journals; Wiley Online Library All Journals
subjects Focal Article
Validity
title Validation Is Like Motor Oil: Synthetic Is Better
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A47%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Validation%20Is%20Like%20Motor%20Oil:%20Synthetic%20Is%20Better&rft.jtitle=Industrial%20and%20organizational%20psychology&rft.au=Johnson,%20Jeff%20W.&rft.date=2010-09&rft.volume=3&rft.issue=3&rft.spage=305&rft.epage=328&rft.pages=305-328&rft.issn=1754-9426&rft.eissn=1754-9434&rft_id=info:doi/10.1017/S1754942600002479&rft_dat=%3Cproquest_cross%3E2601168473%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601168473&rft_id=info:pmid/&rft_cupid=10_1017_S1754942600002479&rfr_iscdi=true