Bayesian Parallel Factor Analysis for Studies of Event-Related Potentials
The aim of the present work was to develop a Bayesian probabilistic model for parallel factor analysis of event-related potentials (ERP) in the human brain. Twelve statistical models considering the specific features of signals from ERP sources are proposed. Procedures for constructing sets of rando...
Gespeichert in:
Veröffentlicht in: | Neuroscience and behavioral physiology 2021-09, Vol.51 (7), p.882-892 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 892 |
---|---|
container_issue | 7 |
container_start_page | 882 |
container_title | Neuroscience and behavioral physiology |
container_volume | 51 |
creator | Ponomarev, V. A. Kropotov, Yu. D. |
description | The aim of the present work was to develop a Bayesian probabilistic model for parallel factor analysis of event-related potentials (ERP) in the human brain. Twelve statistical models considering the specific features of signals from ERP sources are proposed. Procedures for constructing sets of random parameter values based on Markov chain Monte Carlo methods were developed for these models. The effectiveness of these procedures was evaluated using both synthetic data with different signal:noise ratios and a set of ERP recordings obtained from 351 people in a Go/NoGo test. The procedure yielding the most accurate parameter assessments for models was selected. Analysis of the relationship between signals in the model and the type of activity performed by human subjects showed that Bayesian parallel factor analysis identifies functional differences between ERP components. |
doi_str_mv | 10.1007/s11055-021-01147-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2601160266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2601160266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2346-b980c34f19863a025ecf242291c64a73d9b57a2c2127e227d2d8f3980c4e19a73</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKtfwNOC5-jL22yyOdbS1kLB4h_wFtJsIlvW3ZpshX57U1fw5mkYmN_w3hByzeCWAci7yBgUBQVkFBjjkooTMmKFzGmp1NspGQEoSaHg6pxcxLiFBMkSRmR5bw4u1qbN1iaYpnFNNje270I2aU1ziHXMfDLP_b6qXcw6n82-XNvTJ9eY3lXZuuuTrU0TL8mZT-KufnVMXuezl-kDXT0ultPJilrMuaAbVYLNuWeqFLkBLJz1yBEVs4IbmVdqU0iDFhlKhygrrEqfHyHumEqBMbkZeneh-9y72Otttw_p2KhRpOcFoBAphUPKhi7G4LzehfrDhINmoI-T6WEynSbTP5PpI5QPUEzh9t2Fv-p_qG9tHWz_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601160266</pqid></control><display><type>article</type><title>Bayesian Parallel Factor Analysis for Studies of Event-Related Potentials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ponomarev, V. A. ; Kropotov, Yu. D.</creator><creatorcontrib>Ponomarev, V. A. ; Kropotov, Yu. D.</creatorcontrib><description>The aim of the present work was to develop a Bayesian probabilistic model for parallel factor analysis of event-related potentials (ERP) in the human brain. Twelve statistical models considering the specific features of signals from ERP sources are proposed. Procedures for constructing sets of random parameter values based on Markov chain Monte Carlo methods were developed for these models. The effectiveness of these procedures was evaluated using both synthetic data with different signal:noise ratios and a set of ERP recordings obtained from 351 people in a Go/NoGo test. The procedure yielding the most accurate parameter assessments for models was selected. Analysis of the relationship between signals in the model and the type of activity performed by human subjects showed that Bayesian parallel factor analysis identifies functional differences between ERP components.</description><identifier>ISSN: 0097-0549</identifier><identifier>EISSN: 1573-899X</identifier><identifier>DOI: 10.1007/s11055-021-01147-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Bayesian analysis ; Behavioral Sciences ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Event-related potentials ; Factor analysis ; Go/no-go discrimination learning ; Markov chains ; Mathematical models ; Neurobiology ; Neurosciences ; Noise ; Normal distribution ; Statistical analysis</subject><ispartof>Neuroscience and behavioral physiology, 2021-09, Vol.51 (7), p.882-892</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2346-b980c34f19863a025ecf242291c64a73d9b57a2c2127e227d2d8f3980c4e19a73</citedby><cites>FETCH-LOGICAL-c2346-b980c34f19863a025ecf242291c64a73d9b57a2c2127e227d2d8f3980c4e19a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11055-021-01147-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11055-021-01147-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ponomarev, V. A.</creatorcontrib><creatorcontrib>Kropotov, Yu. D.</creatorcontrib><title>Bayesian Parallel Factor Analysis for Studies of Event-Related Potentials</title><title>Neuroscience and behavioral physiology</title><addtitle>Neurosci Behav Physi</addtitle><description>The aim of the present work was to develop a Bayesian probabilistic model for parallel factor analysis of event-related potentials (ERP) in the human brain. Twelve statistical models considering the specific features of signals from ERP sources are proposed. Procedures for constructing sets of random parameter values based on Markov chain Monte Carlo methods were developed for these models. The effectiveness of these procedures was evaluated using both synthetic data with different signal:noise ratios and a set of ERP recordings obtained from 351 people in a Go/NoGo test. The procedure yielding the most accurate parameter assessments for models was selected. Analysis of the relationship between signals in the model and the type of activity performed by human subjects showed that Bayesian parallel factor analysis identifies functional differences between ERP components.</description><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Behavioral Sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Event-related potentials</subject><subject>Factor analysis</subject><subject>Go/no-go discrimination learning</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Noise</subject><subject>Normal distribution</subject><subject>Statistical analysis</subject><issn>0097-0549</issn><issn>1573-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEUxIMoWKtfwNOC5-jL22yyOdbS1kLB4h_wFtJsIlvW3ZpshX57U1fw5mkYmN_w3hByzeCWAci7yBgUBQVkFBjjkooTMmKFzGmp1NspGQEoSaHg6pxcxLiFBMkSRmR5bw4u1qbN1iaYpnFNNje270I2aU1ziHXMfDLP_b6qXcw6n82-XNvTJ9eY3lXZuuuTrU0TL8mZT-KufnVMXuezl-kDXT0ultPJilrMuaAbVYLNuWeqFLkBLJz1yBEVs4IbmVdqU0iDFhlKhygrrEqfHyHumEqBMbkZeneh-9y72Otttw_p2KhRpOcFoBAphUPKhi7G4LzehfrDhINmoI-T6WEynSbTP5PpI5QPUEzh9t2Fv-p_qG9tHWz_</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ponomarev, V. A.</creator><creator>Kropotov, Yu. D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20210901</creationdate><title>Bayesian Parallel Factor Analysis for Studies of Event-Related Potentials</title><author>Ponomarev, V. A. ; Kropotov, Yu. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2346-b980c34f19863a025ecf242291c64a73d9b57a2c2127e227d2d8f3980c4e19a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Behavioral Sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Event-related potentials</topic><topic>Factor analysis</topic><topic>Go/no-go discrimination learning</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Noise</topic><topic>Normal distribution</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ponomarev, V. A.</creatorcontrib><creatorcontrib>Kropotov, Yu. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Neuroscience and behavioral physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ponomarev, V. A.</au><au>Kropotov, Yu. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Parallel Factor Analysis for Studies of Event-Related Potentials</atitle><jtitle>Neuroscience and behavioral physiology</jtitle><stitle>Neurosci Behav Physi</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>51</volume><issue>7</issue><spage>882</spage><epage>892</epage><pages>882-892</pages><issn>0097-0549</issn><eissn>1573-899X</eissn><abstract>The aim of the present work was to develop a Bayesian probabilistic model for parallel factor analysis of event-related potentials (ERP) in the human brain. Twelve statistical models considering the specific features of signals from ERP sources are proposed. Procedures for constructing sets of random parameter values based on Markov chain Monte Carlo methods were developed for these models. The effectiveness of these procedures was evaluated using both synthetic data with different signal:noise ratios and a set of ERP recordings obtained from 351 people in a Go/NoGo test. The procedure yielding the most accurate parameter assessments for models was selected. Analysis of the relationship between signals in the model and the type of activity performed by human subjects showed that Bayesian parallel factor analysis identifies functional differences between ERP components.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11055-021-01147-6</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0097-0549 |
ispartof | Neuroscience and behavioral physiology, 2021-09, Vol.51 (7), p.882-892 |
issn | 0097-0549 1573-899X |
language | eng |
recordid | cdi_proquest_journals_2601160266 |
source | SpringerLink Journals - AutoHoldings |
subjects | Approximation Bayesian analysis Behavioral Sciences Biomedical and Life Sciences Biomedicine Brain Event-related potentials Factor analysis Go/no-go discrimination learning Markov chains Mathematical models Neurobiology Neurosciences Noise Normal distribution Statistical analysis |
title | Bayesian Parallel Factor Analysis for Studies of Event-Related Potentials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Parallel%20Factor%20Analysis%20for%20Studies%20of%20Event-Related%20Potentials&rft.jtitle=Neuroscience%20and%20behavioral%20physiology&rft.au=Ponomarev,%20V.%20A.&rft.date=2021-09-01&rft.volume=51&rft.issue=7&rft.spage=882&rft.epage=892&rft.pages=882-892&rft.issn=0097-0549&rft.eissn=1573-899X&rft_id=info:doi/10.1007/s11055-021-01147-6&rft_dat=%3Cproquest_cross%3E2601160266%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601160266&rft_id=info:pmid/&rfr_iscdi=true |