Bayesian Parallel Factor Analysis for Studies of Event-Related Potentials

The aim of the present work was to develop a Bayesian probabilistic model for parallel factor analysis of event-related potentials (ERP) in the human brain. Twelve statistical models considering the specific features of signals from ERP sources are proposed. Procedures for constructing sets of rando...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience and behavioral physiology 2021-09, Vol.51 (7), p.882-892
Hauptverfasser: Ponomarev, V. A., Kropotov, Yu. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 892
container_issue 7
container_start_page 882
container_title Neuroscience and behavioral physiology
container_volume 51
creator Ponomarev, V. A.
Kropotov, Yu. D.
description The aim of the present work was to develop a Bayesian probabilistic model for parallel factor analysis of event-related potentials (ERP) in the human brain. Twelve statistical models considering the specific features of signals from ERP sources are proposed. Procedures for constructing sets of random parameter values based on Markov chain Monte Carlo methods were developed for these models. The effectiveness of these procedures was evaluated using both synthetic data with different signal:noise ratios and a set of ERP recordings obtained from 351 people in a Go/NoGo test. The procedure yielding the most accurate parameter assessments for models was selected. Analysis of the relationship between signals in the model and the type of activity performed by human subjects showed that Bayesian parallel factor analysis identifies functional differences between ERP components.
doi_str_mv 10.1007/s11055-021-01147-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2601160266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2601160266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2346-b980c34f19863a025ecf242291c64a73d9b57a2c2127e227d2d8f3980c4e19a73</originalsourceid><addsrcrecordid>eNp9kE9LAzEUxIMoWKtfwNOC5-jL22yyOdbS1kLB4h_wFtJsIlvW3ZpshX57U1fw5mkYmN_w3hByzeCWAci7yBgUBQVkFBjjkooTMmKFzGmp1NspGQEoSaHg6pxcxLiFBMkSRmR5bw4u1qbN1iaYpnFNNje270I2aU1ziHXMfDLP_b6qXcw6n82-XNvTJ9eY3lXZuuuTrU0TL8mZT-KufnVMXuezl-kDXT0ultPJilrMuaAbVYLNuWeqFLkBLJz1yBEVs4IbmVdqU0iDFhlKhygrrEqfHyHumEqBMbkZeneh-9y72Otttw_p2KhRpOcFoBAphUPKhi7G4LzehfrDhINmoI-T6WEynSbTP5PpI5QPUEzh9t2Fv-p_qG9tHWz_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601160266</pqid></control><display><type>article</type><title>Bayesian Parallel Factor Analysis for Studies of Event-Related Potentials</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ponomarev, V. A. ; Kropotov, Yu. D.</creator><creatorcontrib>Ponomarev, V. A. ; Kropotov, Yu. D.</creatorcontrib><description>The aim of the present work was to develop a Bayesian probabilistic model for parallel factor analysis of event-related potentials (ERP) in the human brain. Twelve statistical models considering the specific features of signals from ERP sources are proposed. Procedures for constructing sets of random parameter values based on Markov chain Monte Carlo methods were developed for these models. The effectiveness of these procedures was evaluated using both synthetic data with different signal:noise ratios and a set of ERP recordings obtained from 351 people in a Go/NoGo test. The procedure yielding the most accurate parameter assessments for models was selected. Analysis of the relationship between signals in the model and the type of activity performed by human subjects showed that Bayesian parallel factor analysis identifies functional differences between ERP components.</description><identifier>ISSN: 0097-0549</identifier><identifier>EISSN: 1573-899X</identifier><identifier>DOI: 10.1007/s11055-021-01147-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Approximation ; Bayesian analysis ; Behavioral Sciences ; Biomedical and Life Sciences ; Biomedicine ; Brain ; Event-related potentials ; Factor analysis ; Go/no-go discrimination learning ; Markov chains ; Mathematical models ; Neurobiology ; Neurosciences ; Noise ; Normal distribution ; Statistical analysis</subject><ispartof>Neuroscience and behavioral physiology, 2021-09, Vol.51 (7), p.882-892</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2346-b980c34f19863a025ecf242291c64a73d9b57a2c2127e227d2d8f3980c4e19a73</citedby><cites>FETCH-LOGICAL-c2346-b980c34f19863a025ecf242291c64a73d9b57a2c2127e227d2d8f3980c4e19a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11055-021-01147-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11055-021-01147-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Ponomarev, V. A.</creatorcontrib><creatorcontrib>Kropotov, Yu. D.</creatorcontrib><title>Bayesian Parallel Factor Analysis for Studies of Event-Related Potentials</title><title>Neuroscience and behavioral physiology</title><addtitle>Neurosci Behav Physi</addtitle><description>The aim of the present work was to develop a Bayesian probabilistic model for parallel factor analysis of event-related potentials (ERP) in the human brain. Twelve statistical models considering the specific features of signals from ERP sources are proposed. Procedures for constructing sets of random parameter values based on Markov chain Monte Carlo methods were developed for these models. The effectiveness of these procedures was evaluated using both synthetic data with different signal:noise ratios and a set of ERP recordings obtained from 351 people in a Go/NoGo test. The procedure yielding the most accurate parameter assessments for models was selected. Analysis of the relationship between signals in the model and the type of activity performed by human subjects showed that Bayesian parallel factor analysis identifies functional differences between ERP components.</description><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Behavioral Sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain</subject><subject>Event-related potentials</subject><subject>Factor analysis</subject><subject>Go/no-go discrimination learning</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Neurobiology</subject><subject>Neurosciences</subject><subject>Noise</subject><subject>Normal distribution</subject><subject>Statistical analysis</subject><issn>0097-0549</issn><issn>1573-899X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEUxIMoWKtfwNOC5-jL22yyOdbS1kLB4h_wFtJsIlvW3ZpshX57U1fw5mkYmN_w3hByzeCWAci7yBgUBQVkFBjjkooTMmKFzGmp1NspGQEoSaHg6pxcxLiFBMkSRmR5bw4u1qbN1iaYpnFNNje270I2aU1ziHXMfDLP_b6qXcw6n82-XNvTJ9eY3lXZuuuTrU0TL8mZT-KufnVMXuezl-kDXT0ultPJilrMuaAbVYLNuWeqFLkBLJz1yBEVs4IbmVdqU0iDFhlKhygrrEqfHyHumEqBMbkZeneh-9y72Otttw_p2KhRpOcFoBAphUPKhi7G4LzehfrDhINmoI-T6WEynSbTP5PpI5QPUEzh9t2Fv-p_qG9tHWz_</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ponomarev, V. A.</creator><creator>Kropotov, Yu. D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7TK</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20210901</creationdate><title>Bayesian Parallel Factor Analysis for Studies of Event-Related Potentials</title><author>Ponomarev, V. A. ; Kropotov, Yu. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2346-b980c34f19863a025ecf242291c64a73d9b57a2c2127e227d2d8f3980c4e19a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Behavioral Sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain</topic><topic>Event-related potentials</topic><topic>Factor analysis</topic><topic>Go/no-go discrimination learning</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Neurobiology</topic><topic>Neurosciences</topic><topic>Noise</topic><topic>Normal distribution</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ponomarev, V. A.</creatorcontrib><creatorcontrib>Kropotov, Yu. D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>Neuroscience and behavioral physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ponomarev, V. A.</au><au>Kropotov, Yu. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Parallel Factor Analysis for Studies of Event-Related Potentials</atitle><jtitle>Neuroscience and behavioral physiology</jtitle><stitle>Neurosci Behav Physi</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>51</volume><issue>7</issue><spage>882</spage><epage>892</epage><pages>882-892</pages><issn>0097-0549</issn><eissn>1573-899X</eissn><abstract>The aim of the present work was to develop a Bayesian probabilistic model for parallel factor analysis of event-related potentials (ERP) in the human brain. Twelve statistical models considering the specific features of signals from ERP sources are proposed. Procedures for constructing sets of random parameter values based on Markov chain Monte Carlo methods were developed for these models. The effectiveness of these procedures was evaluated using both synthetic data with different signal:noise ratios and a set of ERP recordings obtained from 351 people in a Go/NoGo test. The procedure yielding the most accurate parameter assessments for models was selected. Analysis of the relationship between signals in the model and the type of activity performed by human subjects showed that Bayesian parallel factor analysis identifies functional differences between ERP components.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11055-021-01147-6</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0097-0549
ispartof Neuroscience and behavioral physiology, 2021-09, Vol.51 (7), p.882-892
issn 0097-0549
1573-899X
language eng
recordid cdi_proquest_journals_2601160266
source SpringerLink Journals - AutoHoldings
subjects Approximation
Bayesian analysis
Behavioral Sciences
Biomedical and Life Sciences
Biomedicine
Brain
Event-related potentials
Factor analysis
Go/no-go discrimination learning
Markov chains
Mathematical models
Neurobiology
Neurosciences
Noise
Normal distribution
Statistical analysis
title Bayesian Parallel Factor Analysis for Studies of Event-Related Potentials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A03%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Parallel%20Factor%20Analysis%20for%20Studies%20of%20Event-Related%20Potentials&rft.jtitle=Neuroscience%20and%20behavioral%20physiology&rft.au=Ponomarev,%20V.%20A.&rft.date=2021-09-01&rft.volume=51&rft.issue=7&rft.spage=882&rft.epage=892&rft.pages=882-892&rft.issn=0097-0549&rft.eissn=1573-899X&rft_id=info:doi/10.1007/s11055-021-01147-6&rft_dat=%3Cproquest_cross%3E2601160266%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601160266&rft_id=info:pmid/&rfr_iscdi=true