Murine AML12 hepatocytes allow Salmonella Typhimurium T3SS1-independent invasion and intracellular fate
Numerous studies have demonstrated the key role of the Salmonella Pathogenicity Island 1-encoded type III secretion system (T3SS1) apparatus as well as its associated effectors in the invasion and intracellular fate of Salmonella in the host cell. Several T3SS1 effectors work together to control cyt...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2021-11, Vol.11 (1), p.22803-22803, Article 22803 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22803 |
---|---|
container_issue | 1 |
container_start_page | 22803 |
container_title | Scientific reports |
container_volume | 11 |
creator | Holbert, S. Barilleau, E. Roche, S. M. Trotereau, J. Georgeault, S. Burlaud-Gaillard, J. Wiedemann, A. Méresse, S. Virlogeux-Payant, I. Velge, P. |
description | Numerous studies have demonstrated the key role of the
Salmonella
Pathogenicity Island 1-encoded type III secretion system (T3SS1) apparatus as well as its associated effectors in the invasion and intracellular fate of
Salmonella
in the host cell. Several T3SS1 effectors work together to control cytoskeleton networks and induce massive membrane ruffles, allowing pathogen internalization.
Salmonella
resides in a vacuole whose maturation requires that the activity of T3SS1 subverts early stages of cell signaling. Recently, we identified five cell lines in which
Salmonella
Typhimurium enters without using its three known invasion factors: T3SS1, Rck and PagN. The present study investigated the intracellular fate of
Salmonella
Typhimurium in one of these models, the murine hepatocyte cell line AML12. We demonstrated that both wild-type
Salmonella
and T3SS1-invalidated
Salmonella
followed a common pathway leading to the formation of a
Salmonella
containing vacuole (SCV) without classical recruitment of Rho-GTPases. Maturation of the SCV continued through an acidified phase that led to
Salmonella
multiplication as well as the formation of a tubular network resembling
Salmonella
induced filaments (SIF). The fact that in the murine AML12 hepatocyte, the T3SS1 mutant induced an intracellular fate resembling to the wild-type strain highlights the fact that
Salmonella
Typhimurium invasion and intracellular survival can be completely independent of T3SS1. |
doi_str_mv | 10.1038/s41598-021-02054-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2601151889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4b7786ed7b0e4066a893b52e5a309af9</doaj_id><sourcerecordid>2601151889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-2775c9a0345f39c841d0da32a962267b623af5ff6042dcaef3358c537d05f2b73</originalsourceid><addsrcrecordid>eNqNkl9v0zAUxSMEYtPYF-ABReKFCQX8N7FfkKoK2KROPLQ8WzeO07pK7BInnbpPj9OMsu0BYSmO7fzOyb3WSZK3GH3CiIrPgWEuRYYIjg_iLLt_kZwTxHhGKCEvH63PkssQtigOTiTD8nVyRpnAnBF5nqxvh846k85uF5ikG7OD3utDb0IKTePv0iU0rXemaSBdHXYb20Z8aNMVXS5xZl1ldiZOrk-t20Ow3qXgqrjpO9BRNTTQpTX05k3yqoYmmMuH90Xy89vX1fw6W_z4fjOfLTLNC9ZnpCi4loAo4zWVWjBcoQooAZkTkhdlTijUvK5zxEilwdSUcqE5LSrEa1IW9CK5mXwrD1u162wL3UF5sOp44Lu1gq63ujGKlUUhclMVJTIM5TkISUtODAeKJNQyen2ZvHZD2ZpKm7Gr5onp0y_ObtTa75XIMUYFjwZXk8Hmmex6tlDjWewz55iiPY7sh4efdf7XYEKvWhvGKwRn_BAUyRGWkotcRPT9M3Trh87Faz1SmGMhxurJROnOh9CZ-lQBRmqMkJoipGKE1DFC6j6K3j1u-ST5E5gIfJyAO1P6OmhrnDYnLGasICROOK7EWKn4f3pue-hjguZ-cH2U0kkaIu7Wpvvb5D_q_w1QU_GZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2601151889</pqid></control><display><type>article</type><title>Murine AML12 hepatocytes allow Salmonella Typhimurium T3SS1-independent invasion and intracellular fate</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Holbert, S. ; Barilleau, E. ; Roche, S. M. ; Trotereau, J. ; Georgeault, S. ; Burlaud-Gaillard, J. ; Wiedemann, A. ; Méresse, S. ; Virlogeux-Payant, I. ; Velge, P.</creator><creatorcontrib>Holbert, S. ; Barilleau, E. ; Roche, S. M. ; Trotereau, J. ; Georgeault, S. ; Burlaud-Gaillard, J. ; Wiedemann, A. ; Méresse, S. ; Virlogeux-Payant, I. ; Velge, P.</creatorcontrib><description>Numerous studies have demonstrated the key role of the
Salmonella
Pathogenicity Island 1-encoded type III secretion system (T3SS1) apparatus as well as its associated effectors in the invasion and intracellular fate of
Salmonella
in the host cell. Several T3SS1 effectors work together to control cytoskeleton networks and induce massive membrane ruffles, allowing pathogen internalization.
Salmonella
resides in a vacuole whose maturation requires that the activity of T3SS1 subverts early stages of cell signaling. Recently, we identified five cell lines in which
Salmonella
Typhimurium enters without using its three known invasion factors: T3SS1, Rck and PagN. The present study investigated the intracellular fate of
Salmonella
Typhimurium in one of these models, the murine hepatocyte cell line AML12. We demonstrated that both wild-type
Salmonella
and T3SS1-invalidated
Salmonella
followed a common pathway leading to the formation of a
Salmonella
containing vacuole (SCV) without classical recruitment of Rho-GTPases. Maturation of the SCV continued through an acidified phase that led to
Salmonella
multiplication as well as the formation of a tubular network resembling
Salmonella
induced filaments (SIF). The fact that in the murine AML12 hepatocyte, the T3SS1 mutant induced an intracellular fate resembling to the wild-type strain highlights the fact that
Salmonella
Typhimurium invasion and intracellular survival can be completely independent of T3SS1.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-02054-z</identifier><identifier>PMID: 34815429</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/326 ; 631/80 ; Animal models ; Animals ; Bacterial Proteins - metabolism ; Bacteriology ; Cell culture ; Cell lines ; Cell signaling ; Cytoskeleton ; Filaments ; Guanine nucleotide-binding protein ; Hepatocytes ; Hepatocytes - metabolism ; Hepatocytes - microbiology ; Hepatocytes - pathology ; Humanities and Social Sciences ; Internalization ; Intracellular ; Life Sciences ; Mice ; Microbiology and Parasitology ; multidisciplinary ; Multidisciplinary Sciences ; Pathogenicity ; Pathogens ; Salmonella ; Salmonella Infections - metabolism ; Salmonella Infections - microbiology ; Salmonella Typhimurium ; Salmonella typhimurium - pathogenicity ; Science ; Science & Technology ; Science & Technology - Other Topics ; Science (multidisciplinary) ; Type III Secretion Systems - metabolism ; Vacuoles - metabolism ; Vacuoles - microbiology ; Vacuoles - pathology</subject><ispartof>Scientific reports, 2021-11, Vol.11 (1), p.22803-22803, Article 22803</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000722007100088</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c574t-2775c9a0345f39c841d0da32a962267b623af5ff6042dcaef3358c537d05f2b73</citedby><cites>FETCH-LOGICAL-c574t-2775c9a0345f39c841d0da32a962267b623af5ff6042dcaef3358c537d05f2b73</cites><orcidid>0000-0001-8237-3545 ; 0000-0001-6578-5177 ; 0000-0002-5082-9912 ; 0000-0003-4149-0168 ; 0000-0001-7655-3144 ; 0000-0002-9947-5510 ; 0000-0002-8201-0194</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611075/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8611075/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34815429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03465130$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Holbert, S.</creatorcontrib><creatorcontrib>Barilleau, E.</creatorcontrib><creatorcontrib>Roche, S. M.</creatorcontrib><creatorcontrib>Trotereau, J.</creatorcontrib><creatorcontrib>Georgeault, S.</creatorcontrib><creatorcontrib>Burlaud-Gaillard, J.</creatorcontrib><creatorcontrib>Wiedemann, A.</creatorcontrib><creatorcontrib>Méresse, S.</creatorcontrib><creatorcontrib>Virlogeux-Payant, I.</creatorcontrib><creatorcontrib>Velge, P.</creatorcontrib><title>Murine AML12 hepatocytes allow Salmonella Typhimurium T3SS1-independent invasion and intracellular fate</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>SCI REP-UK</addtitle><addtitle>Sci Rep</addtitle><description>Numerous studies have demonstrated the key role of the
Salmonella
Pathogenicity Island 1-encoded type III secretion system (T3SS1) apparatus as well as its associated effectors in the invasion and intracellular fate of
Salmonella
in the host cell. Several T3SS1 effectors work together to control cytoskeleton networks and induce massive membrane ruffles, allowing pathogen internalization.
Salmonella
resides in a vacuole whose maturation requires that the activity of T3SS1 subverts early stages of cell signaling. Recently, we identified five cell lines in which
Salmonella
Typhimurium enters without using its three known invasion factors: T3SS1, Rck and PagN. The present study investigated the intracellular fate of
Salmonella
Typhimurium in one of these models, the murine hepatocyte cell line AML12. We demonstrated that both wild-type
Salmonella
and T3SS1-invalidated
Salmonella
followed a common pathway leading to the formation of a
Salmonella
containing vacuole (SCV) without classical recruitment of Rho-GTPases. Maturation of the SCV continued through an acidified phase that led to
Salmonella
multiplication as well as the formation of a tubular network resembling
Salmonella
induced filaments (SIF). The fact that in the murine AML12 hepatocyte, the T3SS1 mutant induced an intracellular fate resembling to the wild-type strain highlights the fact that
Salmonella
Typhimurium invasion and intracellular survival can be completely independent of T3SS1.</description><subject>631/326</subject><subject>631/80</subject><subject>Animal models</subject><subject>Animals</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Cell culture</subject><subject>Cell lines</subject><subject>Cell signaling</subject><subject>Cytoskeleton</subject><subject>Filaments</subject><subject>Guanine nucleotide-binding protein</subject><subject>Hepatocytes</subject><subject>Hepatocytes - metabolism</subject><subject>Hepatocytes - microbiology</subject><subject>Hepatocytes - pathology</subject><subject>Humanities and Social Sciences</subject><subject>Internalization</subject><subject>Intracellular</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Microbiology and Parasitology</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Pathogenicity</subject><subject>Pathogens</subject><subject>Salmonella</subject><subject>Salmonella Infections - metabolism</subject><subject>Salmonella Infections - microbiology</subject><subject>Salmonella Typhimurium</subject><subject>Salmonella typhimurium - pathogenicity</subject><subject>Science</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Type III Secretion Systems - metabolism</subject><subject>Vacuoles - metabolism</subject><subject>Vacuoles - microbiology</subject><subject>Vacuoles - pathology</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl9v0zAUxSMEYtPYF-ABReKFCQX8N7FfkKoK2KROPLQ8WzeO07pK7BInnbpPj9OMsu0BYSmO7fzOyb3WSZK3GH3CiIrPgWEuRYYIjg_iLLt_kZwTxHhGKCEvH63PkssQtigOTiTD8nVyRpnAnBF5nqxvh846k85uF5ikG7OD3utDb0IKTePv0iU0rXemaSBdHXYb20Z8aNMVXS5xZl1ldiZOrk-t20Ow3qXgqrjpO9BRNTTQpTX05k3yqoYmmMuH90Xy89vX1fw6W_z4fjOfLTLNC9ZnpCi4loAo4zWVWjBcoQooAZkTkhdlTijUvK5zxEilwdSUcqE5LSrEa1IW9CK5mXwrD1u162wL3UF5sOp44Lu1gq63ujGKlUUhclMVJTIM5TkISUtODAeKJNQyen2ZvHZD2ZpKm7Gr5onp0y_ObtTa75XIMUYFjwZXk8Hmmex6tlDjWewz55iiPY7sh4efdf7XYEKvWhvGKwRn_BAUyRGWkotcRPT9M3Trh87Faz1SmGMhxurJROnOh9CZ-lQBRmqMkJoipGKE1DFC6j6K3j1u-ST5E5gIfJyAO1P6OmhrnDYnLGasICROOK7EWKn4f3pue-hjguZ-cH2U0kkaIu7Wpvvb5D_q_w1QU_GZ</recordid><startdate>20211123</startdate><enddate>20211123</enddate><creator>Holbert, S.</creator><creator>Barilleau, E.</creator><creator>Roche, S. M.</creator><creator>Trotereau, J.</creator><creator>Georgeault, S.</creator><creator>Burlaud-Gaillard, J.</creator><creator>Wiedemann, A.</creator><creator>Méresse, S.</creator><creator>Virlogeux-Payant, I.</creator><creator>Velge, P.</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8237-3545</orcidid><orcidid>https://orcid.org/0000-0001-6578-5177</orcidid><orcidid>https://orcid.org/0000-0002-5082-9912</orcidid><orcidid>https://orcid.org/0000-0003-4149-0168</orcidid><orcidid>https://orcid.org/0000-0001-7655-3144</orcidid><orcidid>https://orcid.org/0000-0002-9947-5510</orcidid><orcidid>https://orcid.org/0000-0002-8201-0194</orcidid></search><sort><creationdate>20211123</creationdate><title>Murine AML12 hepatocytes allow Salmonella Typhimurium T3SS1-independent invasion and intracellular fate</title><author>Holbert, S. ; Barilleau, E. ; Roche, S. M. ; Trotereau, J. ; Georgeault, S. ; Burlaud-Gaillard, J. ; Wiedemann, A. ; Méresse, S. ; Virlogeux-Payant, I. ; Velge, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-2775c9a0345f39c841d0da32a962267b623af5ff6042dcaef3358c537d05f2b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>631/326</topic><topic>631/80</topic><topic>Animal models</topic><topic>Animals</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Cell culture</topic><topic>Cell lines</topic><topic>Cell signaling</topic><topic>Cytoskeleton</topic><topic>Filaments</topic><topic>Guanine nucleotide-binding protein</topic><topic>Hepatocytes</topic><topic>Hepatocytes - metabolism</topic><topic>Hepatocytes - microbiology</topic><topic>Hepatocytes - pathology</topic><topic>Humanities and Social Sciences</topic><topic>Internalization</topic><topic>Intracellular</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Microbiology and Parasitology</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Pathogenicity</topic><topic>Pathogens</topic><topic>Salmonella</topic><topic>Salmonella Infections - metabolism</topic><topic>Salmonella Infections - microbiology</topic><topic>Salmonella Typhimurium</topic><topic>Salmonella typhimurium - pathogenicity</topic><topic>Science</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Type III Secretion Systems - metabolism</topic><topic>Vacuoles - metabolism</topic><topic>Vacuoles - microbiology</topic><topic>Vacuoles - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holbert, S.</creatorcontrib><creatorcontrib>Barilleau, E.</creatorcontrib><creatorcontrib>Roche, S. M.</creatorcontrib><creatorcontrib>Trotereau, J.</creatorcontrib><creatorcontrib>Georgeault, S.</creatorcontrib><creatorcontrib>Burlaud-Gaillard, J.</creatorcontrib><creatorcontrib>Wiedemann, A.</creatorcontrib><creatorcontrib>Méresse, S.</creatorcontrib><creatorcontrib>Virlogeux-Payant, I.</creatorcontrib><creatorcontrib>Velge, P.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holbert, S.</au><au>Barilleau, E.</au><au>Roche, S. M.</au><au>Trotereau, J.</au><au>Georgeault, S.</au><au>Burlaud-Gaillard, J.</au><au>Wiedemann, A.</au><au>Méresse, S.</au><au>Virlogeux-Payant, I.</au><au>Velge, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Murine AML12 hepatocytes allow Salmonella Typhimurium T3SS1-independent invasion and intracellular fate</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><stitle>SCI REP-UK</stitle><addtitle>Sci Rep</addtitle><date>2021-11-23</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>22803</spage><epage>22803</epage><pages>22803-22803</pages><artnum>22803</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Numerous studies have demonstrated the key role of the
Salmonella
Pathogenicity Island 1-encoded type III secretion system (T3SS1) apparatus as well as its associated effectors in the invasion and intracellular fate of
Salmonella
in the host cell. Several T3SS1 effectors work together to control cytoskeleton networks and induce massive membrane ruffles, allowing pathogen internalization.
Salmonella
resides in a vacuole whose maturation requires that the activity of T3SS1 subverts early stages of cell signaling. Recently, we identified five cell lines in which
Salmonella
Typhimurium enters without using its three known invasion factors: T3SS1, Rck and PagN. The present study investigated the intracellular fate of
Salmonella
Typhimurium in one of these models, the murine hepatocyte cell line AML12. We demonstrated that both wild-type
Salmonella
and T3SS1-invalidated
Salmonella
followed a common pathway leading to the formation of a
Salmonella
containing vacuole (SCV) without classical recruitment of Rho-GTPases. Maturation of the SCV continued through an acidified phase that led to
Salmonella
multiplication as well as the formation of a tubular network resembling
Salmonella
induced filaments (SIF). The fact that in the murine AML12 hepatocyte, the T3SS1 mutant induced an intracellular fate resembling to the wild-type strain highlights the fact that
Salmonella
Typhimurium invasion and intracellular survival can be completely independent of T3SS1.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34815429</pmid><doi>10.1038/s41598-021-02054-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8237-3545</orcidid><orcidid>https://orcid.org/0000-0001-6578-5177</orcidid><orcidid>https://orcid.org/0000-0002-5082-9912</orcidid><orcidid>https://orcid.org/0000-0003-4149-0168</orcidid><orcidid>https://orcid.org/0000-0001-7655-3144</orcidid><orcidid>https://orcid.org/0000-0002-9947-5510</orcidid><orcidid>https://orcid.org/0000-0002-8201-0194</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2021-11, Vol.11 (1), p.22803-22803, Article 22803 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_proquest_journals_2601151889 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Springer Nature OA/Free Journals; Free Full-Text Journals in Chemistry |
subjects | 631/326 631/80 Animal models Animals Bacterial Proteins - metabolism Bacteriology Cell culture Cell lines Cell signaling Cytoskeleton Filaments Guanine nucleotide-binding protein Hepatocytes Hepatocytes - metabolism Hepatocytes - microbiology Hepatocytes - pathology Humanities and Social Sciences Internalization Intracellular Life Sciences Mice Microbiology and Parasitology multidisciplinary Multidisciplinary Sciences Pathogenicity Pathogens Salmonella Salmonella Infections - metabolism Salmonella Infections - microbiology Salmonella Typhimurium Salmonella typhimurium - pathogenicity Science Science & Technology Science & Technology - Other Topics Science (multidisciplinary) Type III Secretion Systems - metabolism Vacuoles - metabolism Vacuoles - microbiology Vacuoles - pathology |
title | Murine AML12 hepatocytes allow Salmonella Typhimurium T3SS1-independent invasion and intracellular fate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T21%3A46%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Murine%20AML12%20hepatocytes%20allow%20Salmonella%20Typhimurium%20T3SS1-independent%20invasion%20and%20intracellular%20fate&rft.jtitle=Scientific%20reports&rft.au=Holbert,%20S.&rft.date=2021-11-23&rft.volume=11&rft.issue=1&rft.spage=22803&rft.epage=22803&rft.pages=22803-22803&rft.artnum=22803&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-02054-z&rft_dat=%3Cproquest_hal_p%3E2601151889%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2601151889&rft_id=info:pmid/34815429&rft_doaj_id=oai_doaj_org_article_4b7786ed7b0e4066a893b52e5a309af9&rfr_iscdi=true |