Clustering Analysis Methods for GNSS Observations: A Data‐Driven Approach to Identifying California's Major Faults

We present a data‐driven approach to clustering or grouping Global Navigation Satellite System (GNSS) stations according to observed velocities, displacements or other selected characteristics. Clustering GNSS stations provides useful scientific information, and is a necessary initial step in other...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earth and space science (Hoboken, N.J.) N.J.), 2021-11, Vol.8 (11), p.e2021EA001680-n/a
Hauptverfasser: Granat, Robert, Donnellan, Andrea, Heflin, Michael, Lyzenga, Gregory, Glasscoe, Margaret, Parker, Jay, Pierce, Marlon, Wang, Jun, Rundle, John, Ludwig, Lisa G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page e2021EA001680
container_title Earth and space science (Hoboken, N.J.)
container_volume 8
creator Granat, Robert
Donnellan, Andrea
Heflin, Michael
Lyzenga, Gregory
Glasscoe, Margaret
Parker, Jay
Pierce, Marlon
Wang, Jun
Rundle, John
Ludwig, Lisa G.
description We present a data‐driven approach to clustering or grouping Global Navigation Satellite System (GNSS) stations according to observed velocities, displacements or other selected characteristics. Clustering GNSS stations provides useful scientific information, and is a necessary initial step in other analysis, such as detecting aseismic transient signals (Granat et al., 2013, https://doi.org/10.1785/0220130039). Desired features of the data can be selected for clustering, including some subset of displacement or velocity components, uncertainty estimates, station location, and other relevant information. Based on those selections, the clustering procedure autonomously groups the GNSS stations according to a selected clustering method. We have implemented this approach as a Python application, allowing us to draw upon the full range of open source clustering methods available in Python's scikit‐learn package (Pedregosa et al., 2011, https://doi.org/10.5555/1953048.2078195). The application returns the stations labeled by group as a table and color coded KML file and is designed to work with the GNSS information available from GeoGateway (Donnellan et al., 2021, https://doi.org/10.1007/s12145-020-00561-7; Heflin et al., 2020, https://doi.org/10.1029/2019ea000644) but is easily extensible. We demonstrate the methodology on California and western Nevada. The results show partitions that follow faults or geologic boundaries, including for recent large earthquakes and post‐seismic motion. The San Andreas fault system is most prominent, reflecting Pacific‐North American plate boundary motion. Deformation reflected as class boundaries is distributed north and south of the central California creeping section. For most models a cluster boundary connects the southernmost San Andreas fault with the Eastern California Shear Zone (ECSZ) rather than continuing through the San Gorgonio Pass. Key Points Unsupervised clustering methods provide a data‐driven way of analyzing and partitioning Global Navigation Satellite System observations of crustal deformation Deformation is distributed across the San Andreas fault system but is localized at the creeping section in central California The Southern San Andreas fault connects with the Eastern California Shear Zone rather than the rest of the San Andreas fault system
doi_str_mv 10.1029/2021EA001680
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2600996195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f5ed864ab8614549a411c94e31e1128e</doaj_id><sourcerecordid>2600996195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5205-7f09cb4af117e14242405d1828d9192a1ef51d3b52d055ab275c897cafdf9d453</originalsourceid><addsrcrecordid>eNp9ksFuEzEQhlcIRKvSG2e0Egc4EPB47Y3NAWmVpiVSoYfA2ZpdexNHm3Vqe4Ny4xF4Rp4EpylVygH5YGv86dOM5s-yl0DeA6HyAyUUphUhUAryJDulRVGMOBHs6dH7JDsPYUUSRHlJKHuenRRMUMIEOc3ipBtCNN72i7zqsdsFG_IvJi6dDnnrfH71dT7Pb-pg_BajdX34mFf5BUb8_fPXhbdb0-fVZuMdNss8unymTR9tu9v7JtjZpOgtvklOXCXbJQ5dDC-yZy12wZzf32fZ98vpt8nn0fXN1WxSXY8aTgkfjVsim5phCzA2wGg6hGsQVGgJkiKYloMuak414RxrOuaNkOMGW91KzXhxls0OXu1wpTbertHvlEOr7grOLxT6aJvOqJYbLUqGtSiBcSaRATSSmQIMABUmuT4dXJuhXhvdpDE9do-kj396u1QLt1WCy5LBvpm39wLvbgcTolrb0Jiuw964ISiadlMWpSj36Ot_0JUbfNrOHUWkLEHuqXcHqvEuBG_ah2aAqH061HE6Ev7qeIAH-G8WEgAH4IftzO6_MjWdz6kUvPgDA3DCrQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2600996195</pqid></control><display><type>article</type><title>Clustering Analysis Methods for GNSS Observations: A Data‐Driven Approach to Identifying California's Major Faults</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Granat, Robert ; Donnellan, Andrea ; Heflin, Michael ; Lyzenga, Gregory ; Glasscoe, Margaret ; Parker, Jay ; Pierce, Marlon ; Wang, Jun ; Rundle, John ; Ludwig, Lisa G.</creator><creatorcontrib>Granat, Robert ; Donnellan, Andrea ; Heflin, Michael ; Lyzenga, Gregory ; Glasscoe, Margaret ; Parker, Jay ; Pierce, Marlon ; Wang, Jun ; Rundle, John ; Ludwig, Lisa G.</creatorcontrib><description>We present a data‐driven approach to clustering or grouping Global Navigation Satellite System (GNSS) stations according to observed velocities, displacements or other selected characteristics. Clustering GNSS stations provides useful scientific information, and is a necessary initial step in other analysis, such as detecting aseismic transient signals (Granat et al., 2013, https://doi.org/10.1785/0220130039). Desired features of the data can be selected for clustering, including some subset of displacement or velocity components, uncertainty estimates, station location, and other relevant information. Based on those selections, the clustering procedure autonomously groups the GNSS stations according to a selected clustering method. We have implemented this approach as a Python application, allowing us to draw upon the full range of open source clustering methods available in Python's scikit‐learn package (Pedregosa et al., 2011, https://doi.org/10.5555/1953048.2078195). The application returns the stations labeled by group as a table and color coded KML file and is designed to work with the GNSS information available from GeoGateway (Donnellan et al., 2021, https://doi.org/10.1007/s12145-020-00561-7; Heflin et al., 2020, https://doi.org/10.1029/2019ea000644) but is easily extensible. We demonstrate the methodology on California and western Nevada. The results show partitions that follow faults or geologic boundaries, including for recent large earthquakes and post‐seismic motion. The San Andreas fault system is most prominent, reflecting Pacific‐North American plate boundary motion. Deformation reflected as class boundaries is distributed north and south of the central California creeping section. For most models a cluster boundary connects the southernmost San Andreas fault with the Eastern California Shear Zone (ECSZ) rather than continuing through the San Gorgonio Pass. Key Points Unsupervised clustering methods provide a data‐driven way of analyzing and partitioning Global Navigation Satellite System observations of crustal deformation Deformation is distributed across the San Andreas fault system but is localized at the creeping section in central California The Southern San Andreas fault connects with the Eastern California Shear Zone rather than the rest of the San Andreas fault system</description><identifier>ISSN: 2333-5084</identifier><identifier>EISSN: 2333-5084</identifier><identifier>DOI: 10.1029/2021EA001680</identifier><identifier>PMID: 34820480</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Abrupt/Rapid Climate Change ; Air/Sea Constituent Fluxes ; Air/Sea Interactions ; Algorithms ; Atmospheric ; Atmospheric Composition and Structure ; Atmospheric Effects ; Atmospheric Processes ; Avalanches ; Benefit‐cost Analysis ; Biogeosciences ; Boundaries ; Climate and Interannual Variability ; Climate Change and Variability ; Climate Dynamics ; Climate Impact ; Climate Impacts ; Climate Variability ; Climatology ; Clustering ; Computational Geophysics ; Continental Crust ; Cryosphere ; Decadal Ocean Variability ; Design ; Disaster Risk Analysis and Assessment ; Earth System Modeling ; earthquake ; Earthquake Dynamics ; Earthquake Ground Motions and Engineering Seismology ; Earthquake Interaction, Forecasting, and Prediction ; Earthquake Source Observations ; Earthquakes ; Effusive Volcanism ; Estimation and Forecasting ; Experiments ; Exploration Geophysics ; Explosive Volcanism ; Fault lines ; faults ; Forecasting ; General Circulation ; Geodesy and Gravity ; geodetic imaging ; Geological ; Geometry ; Global Change ; Global Change from Geodesy ; GNSS ; Gravity and Isostasy ; Gravity anomalies and Earth structure ; Gravity Methods ; Hydrological Cycles and Budgets ; Hydrology ; Impacts of Global Change ; Informatics ; Instruments and Techniques ; Interferometry ; Ionosphere ; Ionospheric Physics ; Land/Atmosphere Interactions ; Machine learning for Solid Earth observation, modeling and understanding ; Magnetospheric Physics ; Marine Geology and Geophysics ; Mass Balance ; Mathematical Geophysics ; Modeling ; Monitoring, Forecasting, Prediction ; Mud Volcanism ; Multihazards ; Natural Hazards ; Numerical Modeling ; Numerical Solutions ; Ocean influence of Earth rotation ; Ocean Monitoring with Geodetic Techniques ; Ocean Predictability and Prediction ; Ocean/Atmosphere Interactions ; Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions ; Oceanic ; Oceanography: General ; Oceanography: Physical ; Oceans ; Paleoceanography ; Physical Modeling ; Policy ; Policy Sciences ; Prediction ; Probabilistic Forecasting ; Radio Oceanography ; Radio Science ; Regional Climate Change ; Regional Modeling ; Risk ; Satellite Geodesy: Results ; Sea Level Change ; Sea Level: Variations and Mean ; Seismic activity ; Seismic Cycle Related Deformations ; Seismicity and Tectonics ; Seismology ; Software ; Solid Earth ; Space Weather ; Subduction Zones ; Surface Waves and Tides ; Technical Reports: Methods ; Tectonic Deformation ; tectonics ; Theoretical Modeling ; Time Variable Gravity ; Transient Deformation ; Tsunamis and Storm Surges ; Velocity ; Volcanic Effects ; Volcanic Hazards and Risks ; Volcano Monitoring ; Volcano Seismology ; Volcano/Climate Interactions ; Volcanology ; Water Cycles ; Workflow</subject><ispartof>Earth and space science (Hoboken, N.J.), 2021-11, Vol.8 (11), p.e2021EA001680-n/a</ispartof><rights>2021 Jet Propulsion Laboratory, California Institute of Technology. Government sponsorship acknowledged.</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5205-7f09cb4af117e14242405d1828d9192a1ef51d3b52d055ab275c897cafdf9d453</citedby><cites>FETCH-LOGICAL-c5205-7f09cb4af117e14242405d1828d9192a1ef51d3b52d055ab275c897cafdf9d453</cites><orcidid>0000-0001-6977-2189 ; 0000-0002-7350-4379 ; 0000-0001-6792-1515 ; 0000-0002-8457-1235 ; 0000-0001-6843-8373 ; 0000-0001-6538-8067 ; 0000-0002-9535-7170 ; 0000-0002-4408-2517 ; 0000-0002-1966-4144</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021EA001680$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021EA001680$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,2096,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34820480$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Granat, Robert</creatorcontrib><creatorcontrib>Donnellan, Andrea</creatorcontrib><creatorcontrib>Heflin, Michael</creatorcontrib><creatorcontrib>Lyzenga, Gregory</creatorcontrib><creatorcontrib>Glasscoe, Margaret</creatorcontrib><creatorcontrib>Parker, Jay</creatorcontrib><creatorcontrib>Pierce, Marlon</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Rundle, John</creatorcontrib><creatorcontrib>Ludwig, Lisa G.</creatorcontrib><title>Clustering Analysis Methods for GNSS Observations: A Data‐Driven Approach to Identifying California's Major Faults</title><title>Earth and space science (Hoboken, N.J.)</title><addtitle>Earth Space Sci</addtitle><description>We present a data‐driven approach to clustering or grouping Global Navigation Satellite System (GNSS) stations according to observed velocities, displacements or other selected characteristics. Clustering GNSS stations provides useful scientific information, and is a necessary initial step in other analysis, such as detecting aseismic transient signals (Granat et al., 2013, https://doi.org/10.1785/0220130039). Desired features of the data can be selected for clustering, including some subset of displacement or velocity components, uncertainty estimates, station location, and other relevant information. Based on those selections, the clustering procedure autonomously groups the GNSS stations according to a selected clustering method. We have implemented this approach as a Python application, allowing us to draw upon the full range of open source clustering methods available in Python's scikit‐learn package (Pedregosa et al., 2011, https://doi.org/10.5555/1953048.2078195). The application returns the stations labeled by group as a table and color coded KML file and is designed to work with the GNSS information available from GeoGateway (Donnellan et al., 2021, https://doi.org/10.1007/s12145-020-00561-7; Heflin et al., 2020, https://doi.org/10.1029/2019ea000644) but is easily extensible. We demonstrate the methodology on California and western Nevada. The results show partitions that follow faults or geologic boundaries, including for recent large earthquakes and post‐seismic motion. The San Andreas fault system is most prominent, reflecting Pacific‐North American plate boundary motion. Deformation reflected as class boundaries is distributed north and south of the central California creeping section. For most models a cluster boundary connects the southernmost San Andreas fault with the Eastern California Shear Zone (ECSZ) rather than continuing through the San Gorgonio Pass. Key Points Unsupervised clustering methods provide a data‐driven way of analyzing and partitioning Global Navigation Satellite System observations of crustal deformation Deformation is distributed across the San Andreas fault system but is localized at the creeping section in central California The Southern San Andreas fault connects with the Eastern California Shear Zone rather than the rest of the San Andreas fault system</description><subject>Abrupt/Rapid Climate Change</subject><subject>Air/Sea Constituent Fluxes</subject><subject>Air/Sea Interactions</subject><subject>Algorithms</subject><subject>Atmospheric</subject><subject>Atmospheric Composition and Structure</subject><subject>Atmospheric Effects</subject><subject>Atmospheric Processes</subject><subject>Avalanches</subject><subject>Benefit‐cost Analysis</subject><subject>Biogeosciences</subject><subject>Boundaries</subject><subject>Climate and Interannual Variability</subject><subject>Climate Change and Variability</subject><subject>Climate Dynamics</subject><subject>Climate Impact</subject><subject>Climate Impacts</subject><subject>Climate Variability</subject><subject>Climatology</subject><subject>Clustering</subject><subject>Computational Geophysics</subject><subject>Continental Crust</subject><subject>Cryosphere</subject><subject>Decadal Ocean Variability</subject><subject>Design</subject><subject>Disaster Risk Analysis and Assessment</subject><subject>Earth System Modeling</subject><subject>earthquake</subject><subject>Earthquake Dynamics</subject><subject>Earthquake Ground Motions and Engineering Seismology</subject><subject>Earthquake Interaction, Forecasting, and Prediction</subject><subject>Earthquake Source Observations</subject><subject>Earthquakes</subject><subject>Effusive Volcanism</subject><subject>Estimation and Forecasting</subject><subject>Experiments</subject><subject>Exploration Geophysics</subject><subject>Explosive Volcanism</subject><subject>Fault lines</subject><subject>faults</subject><subject>Forecasting</subject><subject>General Circulation</subject><subject>Geodesy and Gravity</subject><subject>geodetic imaging</subject><subject>Geological</subject><subject>Geometry</subject><subject>Global Change</subject><subject>Global Change from Geodesy</subject><subject>GNSS</subject><subject>Gravity and Isostasy</subject><subject>Gravity anomalies and Earth structure</subject><subject>Gravity Methods</subject><subject>Hydrological Cycles and Budgets</subject><subject>Hydrology</subject><subject>Impacts of Global Change</subject><subject>Informatics</subject><subject>Instruments and Techniques</subject><subject>Interferometry</subject><subject>Ionosphere</subject><subject>Ionospheric Physics</subject><subject>Land/Atmosphere Interactions</subject><subject>Machine learning for Solid Earth observation, modeling and understanding</subject><subject>Magnetospheric Physics</subject><subject>Marine Geology and Geophysics</subject><subject>Mass Balance</subject><subject>Mathematical Geophysics</subject><subject>Modeling</subject><subject>Monitoring, Forecasting, Prediction</subject><subject>Mud Volcanism</subject><subject>Multihazards</subject><subject>Natural Hazards</subject><subject>Numerical Modeling</subject><subject>Numerical Solutions</subject><subject>Ocean influence of Earth rotation</subject><subject>Ocean Monitoring with Geodetic Techniques</subject><subject>Ocean Predictability and Prediction</subject><subject>Ocean/Atmosphere Interactions</subject><subject>Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions</subject><subject>Oceanic</subject><subject>Oceanography: General</subject><subject>Oceanography: Physical</subject><subject>Oceans</subject><subject>Paleoceanography</subject><subject>Physical Modeling</subject><subject>Policy</subject><subject>Policy Sciences</subject><subject>Prediction</subject><subject>Probabilistic Forecasting</subject><subject>Radio Oceanography</subject><subject>Radio Science</subject><subject>Regional Climate Change</subject><subject>Regional Modeling</subject><subject>Risk</subject><subject>Satellite Geodesy: Results</subject><subject>Sea Level Change</subject><subject>Sea Level: Variations and Mean</subject><subject>Seismic activity</subject><subject>Seismic Cycle Related Deformations</subject><subject>Seismicity and Tectonics</subject><subject>Seismology</subject><subject>Software</subject><subject>Solid Earth</subject><subject>Space Weather</subject><subject>Subduction Zones</subject><subject>Surface Waves and Tides</subject><subject>Technical Reports: Methods</subject><subject>Tectonic Deformation</subject><subject>tectonics</subject><subject>Theoretical Modeling</subject><subject>Time Variable Gravity</subject><subject>Transient Deformation</subject><subject>Tsunamis and Storm Surges</subject><subject>Velocity</subject><subject>Volcanic Effects</subject><subject>Volcanic Hazards and Risks</subject><subject>Volcano Monitoring</subject><subject>Volcano Seismology</subject><subject>Volcano/Climate Interactions</subject><subject>Volcanology</subject><subject>Water Cycles</subject><subject>Workflow</subject><issn>2333-5084</issn><issn>2333-5084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9ksFuEzEQhlcIRKvSG2e0Egc4EPB47Y3NAWmVpiVSoYfA2ZpdexNHm3Vqe4Ny4xF4Rp4EpylVygH5YGv86dOM5s-yl0DeA6HyAyUUphUhUAryJDulRVGMOBHs6dH7JDsPYUUSRHlJKHuenRRMUMIEOc3ipBtCNN72i7zqsdsFG_IvJi6dDnnrfH71dT7Pb-pg_BajdX34mFf5BUb8_fPXhbdb0-fVZuMdNss8unymTR9tu9v7JtjZpOgtvklOXCXbJQ5dDC-yZy12wZzf32fZ98vpt8nn0fXN1WxSXY8aTgkfjVsim5phCzA2wGg6hGsQVGgJkiKYloMuak414RxrOuaNkOMGW91KzXhxls0OXu1wpTbertHvlEOr7grOLxT6aJvOqJYbLUqGtSiBcSaRATSSmQIMABUmuT4dXJuhXhvdpDE9do-kj396u1QLt1WCy5LBvpm39wLvbgcTolrb0Jiuw964ISiadlMWpSj36Ot_0JUbfNrOHUWkLEHuqXcHqvEuBG_ah2aAqH061HE6Ev7qeIAH-G8WEgAH4IftzO6_MjWdz6kUvPgDA3DCrQ</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Granat, Robert</creator><creator>Donnellan, Andrea</creator><creator>Heflin, Michael</creator><creator>Lyzenga, Gregory</creator><creator>Glasscoe, Margaret</creator><creator>Parker, Jay</creator><creator>Pierce, Marlon</creator><creator>Wang, Jun</creator><creator>Rundle, John</creator><creator>Ludwig, Lisa G.</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><general>American Geophysical Union (AGU)</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6977-2189</orcidid><orcidid>https://orcid.org/0000-0002-7350-4379</orcidid><orcidid>https://orcid.org/0000-0001-6792-1515</orcidid><orcidid>https://orcid.org/0000-0002-8457-1235</orcidid><orcidid>https://orcid.org/0000-0001-6843-8373</orcidid><orcidid>https://orcid.org/0000-0001-6538-8067</orcidid><orcidid>https://orcid.org/0000-0002-9535-7170</orcidid><orcidid>https://orcid.org/0000-0002-4408-2517</orcidid><orcidid>https://orcid.org/0000-0002-1966-4144</orcidid></search><sort><creationdate>202111</creationdate><title>Clustering Analysis Methods for GNSS Observations: A Data‐Driven Approach to Identifying California's Major Faults</title><author>Granat, Robert ; Donnellan, Andrea ; Heflin, Michael ; Lyzenga, Gregory ; Glasscoe, Margaret ; Parker, Jay ; Pierce, Marlon ; Wang, Jun ; Rundle, John ; Ludwig, Lisa G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5205-7f09cb4af117e14242405d1828d9192a1ef51d3b52d055ab275c897cafdf9d453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abrupt/Rapid Climate Change</topic><topic>Air/Sea Constituent Fluxes</topic><topic>Air/Sea Interactions</topic><topic>Algorithms</topic><topic>Atmospheric</topic><topic>Atmospheric Composition and Structure</topic><topic>Atmospheric Effects</topic><topic>Atmospheric Processes</topic><topic>Avalanches</topic><topic>Benefit‐cost Analysis</topic><topic>Biogeosciences</topic><topic>Boundaries</topic><topic>Climate and Interannual Variability</topic><topic>Climate Change and Variability</topic><topic>Climate Dynamics</topic><topic>Climate Impact</topic><topic>Climate Impacts</topic><topic>Climate Variability</topic><topic>Climatology</topic><topic>Clustering</topic><topic>Computational Geophysics</topic><topic>Continental Crust</topic><topic>Cryosphere</topic><topic>Decadal Ocean Variability</topic><topic>Design</topic><topic>Disaster Risk Analysis and Assessment</topic><topic>Earth System Modeling</topic><topic>earthquake</topic><topic>Earthquake Dynamics</topic><topic>Earthquake Ground Motions and Engineering Seismology</topic><topic>Earthquake Interaction, Forecasting, and Prediction</topic><topic>Earthquake Source Observations</topic><topic>Earthquakes</topic><topic>Effusive Volcanism</topic><topic>Estimation and Forecasting</topic><topic>Experiments</topic><topic>Exploration Geophysics</topic><topic>Explosive Volcanism</topic><topic>Fault lines</topic><topic>faults</topic><topic>Forecasting</topic><topic>General Circulation</topic><topic>Geodesy and Gravity</topic><topic>geodetic imaging</topic><topic>Geological</topic><topic>Geometry</topic><topic>Global Change</topic><topic>Global Change from Geodesy</topic><topic>GNSS</topic><topic>Gravity and Isostasy</topic><topic>Gravity anomalies and Earth structure</topic><topic>Gravity Methods</topic><topic>Hydrological Cycles and Budgets</topic><topic>Hydrology</topic><topic>Impacts of Global Change</topic><topic>Informatics</topic><topic>Instruments and Techniques</topic><topic>Interferometry</topic><topic>Ionosphere</topic><topic>Ionospheric Physics</topic><topic>Land/Atmosphere Interactions</topic><topic>Machine learning for Solid Earth observation, modeling and understanding</topic><topic>Magnetospheric Physics</topic><topic>Marine Geology and Geophysics</topic><topic>Mass Balance</topic><topic>Mathematical Geophysics</topic><topic>Modeling</topic><topic>Monitoring, Forecasting, Prediction</topic><topic>Mud Volcanism</topic><topic>Multihazards</topic><topic>Natural Hazards</topic><topic>Numerical Modeling</topic><topic>Numerical Solutions</topic><topic>Ocean influence of Earth rotation</topic><topic>Ocean Monitoring with Geodetic Techniques</topic><topic>Ocean Predictability and Prediction</topic><topic>Ocean/Atmosphere Interactions</topic><topic>Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions</topic><topic>Oceanic</topic><topic>Oceanography: General</topic><topic>Oceanography: Physical</topic><topic>Oceans</topic><topic>Paleoceanography</topic><topic>Physical Modeling</topic><topic>Policy</topic><topic>Policy Sciences</topic><topic>Prediction</topic><topic>Probabilistic Forecasting</topic><topic>Radio Oceanography</topic><topic>Radio Science</topic><topic>Regional Climate Change</topic><topic>Regional Modeling</topic><topic>Risk</topic><topic>Satellite Geodesy: Results</topic><topic>Sea Level Change</topic><topic>Sea Level: Variations and Mean</topic><topic>Seismic activity</topic><topic>Seismic Cycle Related Deformations</topic><topic>Seismicity and Tectonics</topic><topic>Seismology</topic><topic>Software</topic><topic>Solid Earth</topic><topic>Space Weather</topic><topic>Subduction Zones</topic><topic>Surface Waves and Tides</topic><topic>Technical Reports: Methods</topic><topic>Tectonic Deformation</topic><topic>tectonics</topic><topic>Theoretical Modeling</topic><topic>Time Variable Gravity</topic><topic>Transient Deformation</topic><topic>Tsunamis and Storm Surges</topic><topic>Velocity</topic><topic>Volcanic Effects</topic><topic>Volcanic Hazards and Risks</topic><topic>Volcano Monitoring</topic><topic>Volcano Seismology</topic><topic>Volcano/Climate Interactions</topic><topic>Volcanology</topic><topic>Water Cycles</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Granat, Robert</creatorcontrib><creatorcontrib>Donnellan, Andrea</creatorcontrib><creatorcontrib>Heflin, Michael</creatorcontrib><creatorcontrib>Lyzenga, Gregory</creatorcontrib><creatorcontrib>Glasscoe, Margaret</creatorcontrib><creatorcontrib>Parker, Jay</creatorcontrib><creatorcontrib>Pierce, Marlon</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><creatorcontrib>Rundle, John</creatorcontrib><creatorcontrib>Ludwig, Lisa G.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Earth and space science (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Granat, Robert</au><au>Donnellan, Andrea</au><au>Heflin, Michael</au><au>Lyzenga, Gregory</au><au>Glasscoe, Margaret</au><au>Parker, Jay</au><au>Pierce, Marlon</au><au>Wang, Jun</au><au>Rundle, John</au><au>Ludwig, Lisa G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering Analysis Methods for GNSS Observations: A Data‐Driven Approach to Identifying California's Major Faults</atitle><jtitle>Earth and space science (Hoboken, N.J.)</jtitle><addtitle>Earth Space Sci</addtitle><date>2021-11</date><risdate>2021</risdate><volume>8</volume><issue>11</issue><spage>e2021EA001680</spage><epage>n/a</epage><pages>e2021EA001680-n/a</pages><issn>2333-5084</issn><eissn>2333-5084</eissn><abstract>We present a data‐driven approach to clustering or grouping Global Navigation Satellite System (GNSS) stations according to observed velocities, displacements or other selected characteristics. Clustering GNSS stations provides useful scientific information, and is a necessary initial step in other analysis, such as detecting aseismic transient signals (Granat et al., 2013, https://doi.org/10.1785/0220130039). Desired features of the data can be selected for clustering, including some subset of displacement or velocity components, uncertainty estimates, station location, and other relevant information. Based on those selections, the clustering procedure autonomously groups the GNSS stations according to a selected clustering method. We have implemented this approach as a Python application, allowing us to draw upon the full range of open source clustering methods available in Python's scikit‐learn package (Pedregosa et al., 2011, https://doi.org/10.5555/1953048.2078195). The application returns the stations labeled by group as a table and color coded KML file and is designed to work with the GNSS information available from GeoGateway (Donnellan et al., 2021, https://doi.org/10.1007/s12145-020-00561-7; Heflin et al., 2020, https://doi.org/10.1029/2019ea000644) but is easily extensible. We demonstrate the methodology on California and western Nevada. The results show partitions that follow faults or geologic boundaries, including for recent large earthquakes and post‐seismic motion. The San Andreas fault system is most prominent, reflecting Pacific‐North American plate boundary motion. Deformation reflected as class boundaries is distributed north and south of the central California creeping section. For most models a cluster boundary connects the southernmost San Andreas fault with the Eastern California Shear Zone (ECSZ) rather than continuing through the San Gorgonio Pass. Key Points Unsupervised clustering methods provide a data‐driven way of analyzing and partitioning Global Navigation Satellite System observations of crustal deformation Deformation is distributed across the San Andreas fault system but is localized at the creeping section in central California The Southern San Andreas fault connects with the Eastern California Shear Zone rather than the rest of the San Andreas fault system</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>34820480</pmid><doi>10.1029/2021EA001680</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0001-6977-2189</orcidid><orcidid>https://orcid.org/0000-0002-7350-4379</orcidid><orcidid>https://orcid.org/0000-0001-6792-1515</orcidid><orcidid>https://orcid.org/0000-0002-8457-1235</orcidid><orcidid>https://orcid.org/0000-0001-6843-8373</orcidid><orcidid>https://orcid.org/0000-0001-6538-8067</orcidid><orcidid>https://orcid.org/0000-0002-9535-7170</orcidid><orcidid>https://orcid.org/0000-0002-4408-2517</orcidid><orcidid>https://orcid.org/0000-0002-1966-4144</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2333-5084
ispartof Earth and space science (Hoboken, N.J.), 2021-11, Vol.8 (11), p.e2021EA001680-n/a
issn 2333-5084
2333-5084
language eng
recordid cdi_proquest_journals_2600996195
source Wiley Online Library - AutoHoldings Journals; Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
subjects Abrupt/Rapid Climate Change
Air/Sea Constituent Fluxes
Air/Sea Interactions
Algorithms
Atmospheric
Atmospheric Composition and Structure
Atmospheric Effects
Atmospheric Processes
Avalanches
Benefit‐cost Analysis
Biogeosciences
Boundaries
Climate and Interannual Variability
Climate Change and Variability
Climate Dynamics
Climate Impact
Climate Impacts
Climate Variability
Climatology
Clustering
Computational Geophysics
Continental Crust
Cryosphere
Decadal Ocean Variability
Design
Disaster Risk Analysis and Assessment
Earth System Modeling
earthquake
Earthquake Dynamics
Earthquake Ground Motions and Engineering Seismology
Earthquake Interaction, Forecasting, and Prediction
Earthquake Source Observations
Earthquakes
Effusive Volcanism
Estimation and Forecasting
Experiments
Exploration Geophysics
Explosive Volcanism
Fault lines
faults
Forecasting
General Circulation
Geodesy and Gravity
geodetic imaging
Geological
Geometry
Global Change
Global Change from Geodesy
GNSS
Gravity and Isostasy
Gravity anomalies and Earth structure
Gravity Methods
Hydrological Cycles and Budgets
Hydrology
Impacts of Global Change
Informatics
Instruments and Techniques
Interferometry
Ionosphere
Ionospheric Physics
Land/Atmosphere Interactions
Machine learning for Solid Earth observation, modeling and understanding
Magnetospheric Physics
Marine Geology and Geophysics
Mass Balance
Mathematical Geophysics
Modeling
Monitoring, Forecasting, Prediction
Mud Volcanism
Multihazards
Natural Hazards
Numerical Modeling
Numerical Solutions
Ocean influence of Earth rotation
Ocean Monitoring with Geodetic Techniques
Ocean Predictability and Prediction
Ocean/Atmosphere Interactions
Ocean/Earth/atmosphere/hydrosphere/cryosphere interactions
Oceanic
Oceanography: General
Oceanography: Physical
Oceans
Paleoceanography
Physical Modeling
Policy
Policy Sciences
Prediction
Probabilistic Forecasting
Radio Oceanography
Radio Science
Regional Climate Change
Regional Modeling
Risk
Satellite Geodesy: Results
Sea Level Change
Sea Level: Variations and Mean
Seismic activity
Seismic Cycle Related Deformations
Seismicity and Tectonics
Seismology
Software
Solid Earth
Space Weather
Subduction Zones
Surface Waves and Tides
Technical Reports: Methods
Tectonic Deformation
tectonics
Theoretical Modeling
Time Variable Gravity
Transient Deformation
Tsunamis and Storm Surges
Velocity
Volcanic Effects
Volcanic Hazards and Risks
Volcano Monitoring
Volcano Seismology
Volcano/Climate Interactions
Volcanology
Water Cycles
Workflow
title Clustering Analysis Methods for GNSS Observations: A Data‐Driven Approach to Identifying California's Major Faults
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T20%3A43%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20Analysis%20Methods%20for%20GNSS%20Observations:%20A%20Data%E2%80%90Driven%20Approach%20to%20Identifying%20California's%20Major%20Faults&rft.jtitle=Earth%20and%20space%20science%20(Hoboken,%20N.J.)&rft.au=Granat,%20Robert&rft.date=2021-11&rft.volume=8&rft.issue=11&rft.spage=e2021EA001680&rft.epage=n/a&rft.pages=e2021EA001680-n/a&rft.issn=2333-5084&rft.eissn=2333-5084&rft_id=info:doi/10.1029/2021EA001680&rft_dat=%3Cproquest_doaj_%3E2600996195%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2600996195&rft_id=info:pmid/34820480&rft_doaj_id=oai_doaj_org_article_f5ed864ab8614549a411c94e31e1128e&rfr_iscdi=true