Achieving robustness to aleatoric uncertainty with heteroscedastic Bayesian optimisation

Bayesian optimisation is a sample-efficient search methodology that holds great promise for accelerating drug and materials discovery programs. A frequently-overlooked modelling consideration in Bayesian optimisation strategies however, is the representation of heteroscedastic aleatoric uncertainty....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning: science and technology 2022-03, Vol.3 (1), p.15004
Hauptverfasser: Griffiths, Ryan-Rhys, A Aldrick, Alexander, Garcia-Ortegon, Miguel, Lalchand, Vidhi, Lee, Alpha A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 15004
container_title Machine learning: science and technology
container_volume 3
creator Griffiths, Ryan-Rhys
A Aldrick, Alexander
Garcia-Ortegon, Miguel
Lalchand, Vidhi
Lee, Alpha A
description Bayesian optimisation is a sample-efficient search methodology that holds great promise for accelerating drug and materials discovery programs. A frequently-overlooked modelling consideration in Bayesian optimisation strategies however, is the representation of heteroscedastic aleatoric uncertainty. In many practical applications it is desirable to identify inputs with low aleatoric noise, an example of which might be a material composition which displays robust properties in response to a noisy fabrication process. In this paper, we propose a heteroscedastic Bayesian optimisation scheme capable of representing and minimising aleatoric noise across the input space. Our scheme employs a heteroscedastic Gaussian process surrogate model in conjunction with two straightforward adaptations of existing acquisition functions. First, we extend the augmented expected improvement heuristic to the heteroscedastic setting and second, we introduce the aleatoric noise-penalised expected improvement (ANPEI) heuristic. Both methodologies are capable of penalising aleatoric noise in the suggestions. In particular, the ANPEI acquisition yields improved performance relative to homoscedastic Bayesian optimisation and random sampling on toy problems as well as on two real-world scientific datasets. Code is available at: https://github.com/Ryan-Rhys/Heteroscedastic-BO
doi_str_mv 10.1088/2632-2153/ac298c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2600970209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600970209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-1a6d50bbc41f3eb15513c009ac706e456aadf261fc7c177f108d66a681f0ac0a3</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWLR3jwEPXlw7yXaz22MtfkHBi4K3MJtNbEq7WZOs0v_elBX1oKcZht-8efMIOWNwxaCqJlzkPOOsyCeo-KxSB2T0PTr81R-TcQhrAOAFywsOI_IyVyur3237Sr2r-xBbHQKNjuJGY3TeKtq3SvuIto07-mHjiq501N4FpRsMMQHXuNPBYktdF-3WBozWtafkyOAm6PFXPSHPtzdPi_ts-Xj3sJgvM5VXPGYMRVNAXaspM7muWZGMKYAZqhKEnhYCsTFcMKNKxcrSpHcbIVBUzAAqwPyEnA-6nXdvvQ5Rrl3v23RScpGESuAwSxQMlErGg9dGdt5u0e8kA7mPUO4zkvuM5BBhWrkYVqzrfjS3m3Qhl0wCKwCmsmtMIi__IP8V_gQeG4EA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2600970209</pqid></control><display><type>article</type><title>Achieving robustness to aleatoric uncertainty with heteroscedastic Bayesian optimisation</title><source>DOAJ Directory of Open Access Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Griffiths, Ryan-Rhys ; A Aldrick, Alexander ; Garcia-Ortegon, Miguel ; Lalchand, Vidhi ; Lee, Alpha A</creator><creatorcontrib>Griffiths, Ryan-Rhys ; A Aldrick, Alexander ; Garcia-Ortegon, Miguel ; Lalchand, Vidhi ; Lee, Alpha A</creatorcontrib><description>Bayesian optimisation is a sample-efficient search methodology that holds great promise for accelerating drug and materials discovery programs. A frequently-overlooked modelling consideration in Bayesian optimisation strategies however, is the representation of heteroscedastic aleatoric uncertainty. In many practical applications it is desirable to identify inputs with low aleatoric noise, an example of which might be a material composition which displays robust properties in response to a noisy fabrication process. In this paper, we propose a heteroscedastic Bayesian optimisation scheme capable of representing and minimising aleatoric noise across the input space. Our scheme employs a heteroscedastic Gaussian process surrogate model in conjunction with two straightforward adaptations of existing acquisition functions. First, we extend the augmented expected improvement heuristic to the heteroscedastic setting and second, we introduce the aleatoric noise-penalised expected improvement (ANPEI) heuristic. Both methodologies are capable of penalising aleatoric noise in the suggestions. In particular, the ANPEI acquisition yields improved performance relative to homoscedastic Bayesian optimisation and random sampling on toy problems as well as on two real-world scientific datasets. Code is available at: https://github.com/Ryan-Rhys/Heteroscedastic-BO</description><identifier>ISSN: 2632-2153</identifier><identifier>EISSN: 2632-2153</identifier><identifier>DOI: 10.1088/2632-2153/ac298c</identifier><identifier>CODEN: MLSTCK</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Bayesian analysis ; Bayesian optimisation ; Gaussian process ; Gaussian processes ; heteroscedasticity ; Heuristic ; Heuristic methods ; Noise ; Optimization ; Random sampling ; Uncertainty</subject><ispartof>Machine learning: science and technology, 2022-03, Vol.3 (1), p.15004</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-1a6d50bbc41f3eb15513c009ac706e456aadf261fc7c177f108d66a681f0ac0a3</citedby><cites>FETCH-LOGICAL-c382t-1a6d50bbc41f3eb15513c009ac706e456aadf261fc7c177f108d66a681f0ac0a3</cites><orcidid>0000-0003-3117-4559</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2632-2153/ac298c/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Griffiths, Ryan-Rhys</creatorcontrib><creatorcontrib>A Aldrick, Alexander</creatorcontrib><creatorcontrib>Garcia-Ortegon, Miguel</creatorcontrib><creatorcontrib>Lalchand, Vidhi</creatorcontrib><creatorcontrib>Lee, Alpha A</creatorcontrib><title>Achieving robustness to aleatoric uncertainty with heteroscedastic Bayesian optimisation</title><title>Machine learning: science and technology</title><addtitle>MLST</addtitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><description>Bayesian optimisation is a sample-efficient search methodology that holds great promise for accelerating drug and materials discovery programs. A frequently-overlooked modelling consideration in Bayesian optimisation strategies however, is the representation of heteroscedastic aleatoric uncertainty. In many practical applications it is desirable to identify inputs with low aleatoric noise, an example of which might be a material composition which displays robust properties in response to a noisy fabrication process. In this paper, we propose a heteroscedastic Bayesian optimisation scheme capable of representing and minimising aleatoric noise across the input space. Our scheme employs a heteroscedastic Gaussian process surrogate model in conjunction with two straightforward adaptations of existing acquisition functions. First, we extend the augmented expected improvement heuristic to the heteroscedastic setting and second, we introduce the aleatoric noise-penalised expected improvement (ANPEI) heuristic. Both methodologies are capable of penalising aleatoric noise in the suggestions. In particular, the ANPEI acquisition yields improved performance relative to homoscedastic Bayesian optimisation and random sampling on toy problems as well as on two real-world scientific datasets. Code is available at: https://github.com/Ryan-Rhys/Heteroscedastic-BO</description><subject>Bayesian analysis</subject><subject>Bayesian optimisation</subject><subject>Gaussian process</subject><subject>Gaussian processes</subject><subject>heteroscedasticity</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Noise</subject><subject>Optimization</subject><subject>Random sampling</subject><subject>Uncertainty</subject><issn>2632-2153</issn><issn>2632-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1LAzEQxYMoWLR3jwEPXlw7yXaz22MtfkHBi4K3MJtNbEq7WZOs0v_elBX1oKcZht-8efMIOWNwxaCqJlzkPOOsyCeo-KxSB2T0PTr81R-TcQhrAOAFywsOI_IyVyur3237Sr2r-xBbHQKNjuJGY3TeKtq3SvuIto07-mHjiq501N4FpRsMMQHXuNPBYktdF-3WBozWtafkyOAm6PFXPSHPtzdPi_ts-Xj3sJgvM5VXPGYMRVNAXaspM7muWZGMKYAZqhKEnhYCsTFcMKNKxcrSpHcbIVBUzAAqwPyEnA-6nXdvvQ5Rrl3v23RScpGESuAwSxQMlErGg9dGdt5u0e8kA7mPUO4zkvuM5BBhWrkYVqzrfjS3m3Qhl0wCKwCmsmtMIi__IP8V_gQeG4EA</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Griffiths, Ryan-Rhys</creator><creator>A Aldrick, Alexander</creator><creator>Garcia-Ortegon, Miguel</creator><creator>Lalchand, Vidhi</creator><creator>Lee, Alpha A</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3117-4559</orcidid></search><sort><creationdate>20220301</creationdate><title>Achieving robustness to aleatoric uncertainty with heteroscedastic Bayesian optimisation</title><author>Griffiths, Ryan-Rhys ; A Aldrick, Alexander ; Garcia-Ortegon, Miguel ; Lalchand, Vidhi ; Lee, Alpha A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-1a6d50bbc41f3eb15513c009ac706e456aadf261fc7c177f108d66a681f0ac0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bayesian analysis</topic><topic>Bayesian optimisation</topic><topic>Gaussian process</topic><topic>Gaussian processes</topic><topic>heteroscedasticity</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Noise</topic><topic>Optimization</topic><topic>Random sampling</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Griffiths, Ryan-Rhys</creatorcontrib><creatorcontrib>A Aldrick, Alexander</creatorcontrib><creatorcontrib>Garcia-Ortegon, Miguel</creatorcontrib><creatorcontrib>Lalchand, Vidhi</creatorcontrib><creatorcontrib>Lee, Alpha A</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Machine learning: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Griffiths, Ryan-Rhys</au><au>A Aldrick, Alexander</au><au>Garcia-Ortegon, Miguel</au><au>Lalchand, Vidhi</au><au>Lee, Alpha A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achieving robustness to aleatoric uncertainty with heteroscedastic Bayesian optimisation</atitle><jtitle>Machine learning: science and technology</jtitle><stitle>MLST</stitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>3</volume><issue>1</issue><spage>15004</spage><pages>15004-</pages><issn>2632-2153</issn><eissn>2632-2153</eissn><coden>MLSTCK</coden><abstract>Bayesian optimisation is a sample-efficient search methodology that holds great promise for accelerating drug and materials discovery programs. A frequently-overlooked modelling consideration in Bayesian optimisation strategies however, is the representation of heteroscedastic aleatoric uncertainty. In many practical applications it is desirable to identify inputs with low aleatoric noise, an example of which might be a material composition which displays robust properties in response to a noisy fabrication process. In this paper, we propose a heteroscedastic Bayesian optimisation scheme capable of representing and minimising aleatoric noise across the input space. Our scheme employs a heteroscedastic Gaussian process surrogate model in conjunction with two straightforward adaptations of existing acquisition functions. First, we extend the augmented expected improvement heuristic to the heteroscedastic setting and second, we introduce the aleatoric noise-penalised expected improvement (ANPEI) heuristic. Both methodologies are capable of penalising aleatoric noise in the suggestions. In particular, the ANPEI acquisition yields improved performance relative to homoscedastic Bayesian optimisation and random sampling on toy problems as well as on two real-world scientific datasets. Code is available at: https://github.com/Ryan-Rhys/Heteroscedastic-BO</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2632-2153/ac298c</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0003-3117-4559</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2632-2153
ispartof Machine learning: science and technology, 2022-03, Vol.3 (1), p.15004
issn 2632-2153
2632-2153
language eng
recordid cdi_proquest_journals_2600970209
source DOAJ Directory of Open Access Journals; Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals
subjects Bayesian analysis
Bayesian optimisation
Gaussian process
Gaussian processes
heteroscedasticity
Heuristic
Heuristic methods
Noise
Optimization
Random sampling
Uncertainty
title Achieving robustness to aleatoric uncertainty with heteroscedastic Bayesian optimisation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A17%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achieving%20robustness%20to%20aleatoric%20uncertainty%20with%20heteroscedastic%20Bayesian%20optimisation&rft.jtitle=Machine%20learning:%20science%20and%20technology&rft.au=Griffiths,%20Ryan-Rhys&rft.date=2022-03-01&rft.volume=3&rft.issue=1&rft.spage=15004&rft.pages=15004-&rft.issn=2632-2153&rft.eissn=2632-2153&rft.coden=MLSTCK&rft_id=info:doi/10.1088/2632-2153/ac298c&rft_dat=%3Cproquest_cross%3E2600970209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2600970209&rft_id=info:pmid/&rfr_iscdi=true