Miniaturizing neural networks for charge state autotuning in quantum dots
A key challenge in scaling quantum computers is the calibration and control of multiple qubits. In solid-state quantum dots (QDs), the gate voltages required to stabilize quantized charges are unique for each individual qubit, resulting in a high-dimensional control parameter space that must be tune...
Gespeichert in:
Veröffentlicht in: | Machine learning: science and technology 2022-03, Vol.3 (1), p.15001 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 15001 |
container_title | Machine learning: science and technology |
container_volume | 3 |
creator | Czischek, Stefanie Yon, Victor Genest, Marc-Antoine Roux, Marc-Antoine Rochette, Sophie Camirand Lemyre, Julien Moras, Mathieu Pioro-Ladrière, Michel Drouin, Dominique Beilliard, Yann Melko, Roger G |
description | A key challenge in scaling quantum computers is the calibration and control of multiple qubits. In solid-state quantum dots (QDs), the gate voltages required to stabilize quantized charges are unique for each individual qubit, resulting in a high-dimensional control parameter space that must be tuned automatically. Machine learning techniques are capable of processing high-dimensional data—provided that an appropriate training set is available—and have been successfully used for autotuning in the past. In this paper, we develop extremely small feed-forward neural networks that can be used to detect charge-state transitions in QD stability diagrams. We demonstrate that these neural networks can be trained on synthetic data produced by computer simulations, and robustly transferred to the task of tuning an experimental device into a desired charge state. The neural networks required for this task are sufficiently small as to enable an implementation in existing memristor crossbar arrays in the near future. This opens up the possibility of miniaturizing powerful control elements on low-power hardware, a significant step towards on-chip autotuning in future QD computers. |
doi_str_mv | 10.1088/2632-2153/ac34db |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2600963584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600963584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-fd5387c9dc4642fa05fc83eb2b4598ae55efb044a52c923fce18a6f70988c3e53</originalsourceid><addsrcrecordid>eNp9kMFLwzAYxYsoOObuHgseRLD6JWm69DiGusHEi55DmiZbZtd0SaroX29LZXoQT-_j4_cejxdF5whuEDB2izOCE4wouRWSpGVxFI0Or-Nf92k08X4LAJgiQjGMouWjqY0IrTOfpl7HtWqdqDoJ79a9-lhbF8uNcGsV-yCCikUbbGjrnjV1vG9FHdpdXNrgz6ITLSqvJt86jl7u757ni2T19LCcz1aJTFEWEl1SwqYyL2WapVgLoFoyogpcpDRnQlGqdAFpKiiWOSZaKsREpqeQMyaJomQcXQ25G1HxxpmdcB_cCsMXsxXvf9AHUzx9Qx17MbCNs_tW-cC3tnV1V4_jDCDPCGVpR8FASWe9d0ofYhHwfl_eD8j7Afmwb2e5HizGNj-Z_-CXf-C7qitEOOKAKADiTanJF4dmiRU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2600963584</pqid></control><display><type>article</type><title>Miniaturizing neural networks for charge state autotuning in quantum dots</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Czischek, Stefanie ; Yon, Victor ; Genest, Marc-Antoine ; Roux, Marc-Antoine ; Rochette, Sophie ; Camirand Lemyre, Julien ; Moras, Mathieu ; Pioro-Ladrière, Michel ; Drouin, Dominique ; Beilliard, Yann ; Melko, Roger G</creator><creatorcontrib>Czischek, Stefanie ; Yon, Victor ; Genest, Marc-Antoine ; Roux, Marc-Antoine ; Rochette, Sophie ; Camirand Lemyre, Julien ; Moras, Mathieu ; Pioro-Ladrière, Michel ; Drouin, Dominique ; Beilliard, Yann ; Melko, Roger G</creatorcontrib><description>A key challenge in scaling quantum computers is the calibration and control of multiple qubits. In solid-state quantum dots (QDs), the gate voltages required to stabilize quantized charges are unique for each individual qubit, resulting in a high-dimensional control parameter space that must be tuned automatically. Machine learning techniques are capable of processing high-dimensional data—provided that an appropriate training set is available—and have been successfully used for autotuning in the past. In this paper, we develop extremely small feed-forward neural networks that can be used to detect charge-state transitions in QD stability diagrams. We demonstrate that these neural networks can be trained on synthetic data produced by computer simulations, and robustly transferred to the task of tuning an experimental device into a desired charge state. The neural networks required for this task are sufficiently small as to enable an implementation in existing memristor crossbar arrays in the near future. This opens up the possibility of miniaturizing powerful control elements on low-power hardware, a significant step towards on-chip autotuning in future QD computers.</description><identifier>ISSN: 2632-2153</identifier><identifier>EISSN: 2632-2153</identifier><identifier>DOI: 10.1088/2632-2153/ac34db</identifier><identifier>CODEN: MLSTCK</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>artificial neural network ; automated tuning ; charge state tuning ; Engineering Sciences ; Machine learning ; Memristors ; Miniaturization ; miniaturizing neural networks ; Neural networks ; Quantum computers ; quantum dot ; Quantum dots ; Qubits (quantum computing)</subject><ispartof>Machine learning: science and technology, 2022-03, Vol.3 (1), p.15001</ispartof><rights>2021 The Author(s). Published by IOP Publishing Ltd</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-fd5387c9dc4642fa05fc83eb2b4598ae55efb044a52c923fce18a6f70988c3e53</citedby><cites>FETCH-LOGICAL-c416t-fd5387c9dc4642fa05fc83eb2b4598ae55efb044a52c923fce18a6f70988c3e53</cites><orcidid>0000-0003-0311-8840 ; 0000-0001-7326-2472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/2632-2153/ac34db/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,860,881,27903,27904,38869,53845</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04642527$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Czischek, Stefanie</creatorcontrib><creatorcontrib>Yon, Victor</creatorcontrib><creatorcontrib>Genest, Marc-Antoine</creatorcontrib><creatorcontrib>Roux, Marc-Antoine</creatorcontrib><creatorcontrib>Rochette, Sophie</creatorcontrib><creatorcontrib>Camirand Lemyre, Julien</creatorcontrib><creatorcontrib>Moras, Mathieu</creatorcontrib><creatorcontrib>Pioro-Ladrière, Michel</creatorcontrib><creatorcontrib>Drouin, Dominique</creatorcontrib><creatorcontrib>Beilliard, Yann</creatorcontrib><creatorcontrib>Melko, Roger G</creatorcontrib><title>Miniaturizing neural networks for charge state autotuning in quantum dots</title><title>Machine learning: science and technology</title><addtitle>MLST</addtitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><description>A key challenge in scaling quantum computers is the calibration and control of multiple qubits. In solid-state quantum dots (QDs), the gate voltages required to stabilize quantized charges are unique for each individual qubit, resulting in a high-dimensional control parameter space that must be tuned automatically. Machine learning techniques are capable of processing high-dimensional data—provided that an appropriate training set is available—and have been successfully used for autotuning in the past. In this paper, we develop extremely small feed-forward neural networks that can be used to detect charge-state transitions in QD stability diagrams. We demonstrate that these neural networks can be trained on synthetic data produced by computer simulations, and robustly transferred to the task of tuning an experimental device into a desired charge state. The neural networks required for this task are sufficiently small as to enable an implementation in existing memristor crossbar arrays in the near future. This opens up the possibility of miniaturizing powerful control elements on low-power hardware, a significant step towards on-chip autotuning in future QD computers.</description><subject>artificial neural network</subject><subject>automated tuning</subject><subject>charge state tuning</subject><subject>Engineering Sciences</subject><subject>Machine learning</subject><subject>Memristors</subject><subject>Miniaturization</subject><subject>miniaturizing neural networks</subject><subject>Neural networks</subject><subject>Quantum computers</subject><subject>quantum dot</subject><subject>Quantum dots</subject><subject>Qubits (quantum computing)</subject><issn>2632-2153</issn><issn>2632-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kMFLwzAYxYsoOObuHgseRLD6JWm69DiGusHEi55DmiZbZtd0SaroX29LZXoQT-_j4_cejxdF5whuEDB2izOCE4wouRWSpGVxFI0Or-Nf92k08X4LAJgiQjGMouWjqY0IrTOfpl7HtWqdqDoJ79a9-lhbF8uNcGsV-yCCikUbbGjrnjV1vG9FHdpdXNrgz6ITLSqvJt86jl7u757ni2T19LCcz1aJTFEWEl1SwqYyL2WapVgLoFoyogpcpDRnQlGqdAFpKiiWOSZaKsREpqeQMyaJomQcXQ25G1HxxpmdcB_cCsMXsxXvf9AHUzx9Qx17MbCNs_tW-cC3tnV1V4_jDCDPCGVpR8FASWe9d0ofYhHwfl_eD8j7Afmwb2e5HizGNj-Z_-CXf-C7qitEOOKAKADiTanJF4dmiRU</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Czischek, Stefanie</creator><creator>Yon, Victor</creator><creator>Genest, Marc-Antoine</creator><creator>Roux, Marc-Antoine</creator><creator>Rochette, Sophie</creator><creator>Camirand Lemyre, Julien</creator><creator>Moras, Mathieu</creator><creator>Pioro-Ladrière, Michel</creator><creator>Drouin, Dominique</creator><creator>Beilliard, Yann</creator><creator>Melko, Roger G</creator><general>IOP Publishing</general><general>IOP Publishing Ltd</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0311-8840</orcidid><orcidid>https://orcid.org/0000-0001-7326-2472</orcidid></search><sort><creationdate>20220301</creationdate><title>Miniaturizing neural networks for charge state autotuning in quantum dots</title><author>Czischek, Stefanie ; Yon, Victor ; Genest, Marc-Antoine ; Roux, Marc-Antoine ; Rochette, Sophie ; Camirand Lemyre, Julien ; Moras, Mathieu ; Pioro-Ladrière, Michel ; Drouin, Dominique ; Beilliard, Yann ; Melko, Roger G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-fd5387c9dc4642fa05fc83eb2b4598ae55efb044a52c923fce18a6f70988c3e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>artificial neural network</topic><topic>automated tuning</topic><topic>charge state tuning</topic><topic>Engineering Sciences</topic><topic>Machine learning</topic><topic>Memristors</topic><topic>Miniaturization</topic><topic>miniaturizing neural networks</topic><topic>Neural networks</topic><topic>Quantum computers</topic><topic>quantum dot</topic><topic>Quantum dots</topic><topic>Qubits (quantum computing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Czischek, Stefanie</creatorcontrib><creatorcontrib>Yon, Victor</creatorcontrib><creatorcontrib>Genest, Marc-Antoine</creatorcontrib><creatorcontrib>Roux, Marc-Antoine</creatorcontrib><creatorcontrib>Rochette, Sophie</creatorcontrib><creatorcontrib>Camirand Lemyre, Julien</creatorcontrib><creatorcontrib>Moras, Mathieu</creatorcontrib><creatorcontrib>Pioro-Ladrière, Michel</creatorcontrib><creatorcontrib>Drouin, Dominique</creatorcontrib><creatorcontrib>Beilliard, Yann</creatorcontrib><creatorcontrib>Melko, Roger G</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Machine learning: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Czischek, Stefanie</au><au>Yon, Victor</au><au>Genest, Marc-Antoine</au><au>Roux, Marc-Antoine</au><au>Rochette, Sophie</au><au>Camirand Lemyre, Julien</au><au>Moras, Mathieu</au><au>Pioro-Ladrière, Michel</au><au>Drouin, Dominique</au><au>Beilliard, Yann</au><au>Melko, Roger G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Miniaturizing neural networks for charge state autotuning in quantum dots</atitle><jtitle>Machine learning: science and technology</jtitle><stitle>MLST</stitle><addtitle>Mach. Learn.: Sci. Technol</addtitle><date>2022-03-01</date><risdate>2022</risdate><volume>3</volume><issue>1</issue><spage>15001</spage><pages>15001-</pages><issn>2632-2153</issn><eissn>2632-2153</eissn><coden>MLSTCK</coden><abstract>A key challenge in scaling quantum computers is the calibration and control of multiple qubits. In solid-state quantum dots (QDs), the gate voltages required to stabilize quantized charges are unique for each individual qubit, resulting in a high-dimensional control parameter space that must be tuned automatically. Machine learning techniques are capable of processing high-dimensional data—provided that an appropriate training set is available—and have been successfully used for autotuning in the past. In this paper, we develop extremely small feed-forward neural networks that can be used to detect charge-state transitions in QD stability diagrams. We demonstrate that these neural networks can be trained on synthetic data produced by computer simulations, and robustly transferred to the task of tuning an experimental device into a desired charge state. The neural networks required for this task are sufficiently small as to enable an implementation in existing memristor crossbar arrays in the near future. This opens up the possibility of miniaturizing powerful control elements on low-power hardware, a significant step towards on-chip autotuning in future QD computers.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/2632-2153/ac34db</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0311-8840</orcidid><orcidid>https://orcid.org/0000-0001-7326-2472</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2632-2153 |
ispartof | Machine learning: science and technology, 2022-03, Vol.3 (1), p.15001 |
issn | 2632-2153 2632-2153 |
language | eng |
recordid | cdi_proquest_journals_2600963584 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | artificial neural network automated tuning charge state tuning Engineering Sciences Machine learning Memristors Miniaturization miniaturizing neural networks Neural networks Quantum computers quantum dot Quantum dots Qubits (quantum computing) |
title | Miniaturizing neural networks for charge state autotuning in quantum dots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T11%3A03%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Miniaturizing%20neural%20networks%20for%20charge%20state%20autotuning%20in%20quantum%20dots&rft.jtitle=Machine%20learning:%20science%20and%20technology&rft.au=Czischek,%20Stefanie&rft.date=2022-03-01&rft.volume=3&rft.issue=1&rft.spage=15001&rft.pages=15001-&rft.issn=2632-2153&rft.eissn=2632-2153&rft.coden=MLSTCK&rft_id=info:doi/10.1088/2632-2153/ac34db&rft_dat=%3Cproquest_iop_j%3E2600963584%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2600963584&rft_id=info:pmid/&rfr_iscdi=true |