Tailoring the working gas flow to improve the surface modification of plasma-treated polymers
The paper aims to comparatively investigate the plasma-induced effects − under different discharge regimes: stationary and flowing gas (He and He + 0.5%O2) − on the surface properties of four types of polymers, with a distinct structure, degree of oxidation, and functionality. A pulsed dielectric ba...
Gespeichert in:
Veröffentlicht in: | Materials letters 2021-12, Vol.305, p.130832, Article 130832 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 130832 |
container_title | Materials letters |
container_volume | 305 |
creator | Chiper, Alina Silvia |
description | The paper aims to comparatively investigate the plasma-induced effects − under different discharge regimes: stationary and flowing gas (He and He + 0.5%O2) − on the surface properties of four types of polymers, with a distinct structure, degree of oxidation, and functionality. A pulsed dielectric barrier discharge is used to produce homogenous non-thermal atmospheric-pressure plasma for uniform, efficient, reproducible chemical surface processing. The discharge characteristics, specific to each mode of operation, were analyzed in correlation with the changes in the surface characteristics found following plasma exposure. The plasma treatment increases the surface hydrophilization of all tested polymers, regardless of the discharge mode of operation. Nevertheless, the optimum discharge regime for surface functionalization is correlated with the polymer structure and discharge characteristics. Thus, polypropylene and polystyrene present the maximum wettability in trapping gas mode, while poly(methyl methacrylate) and polysulfone, in the flowing gas mixture. The experimental results demonstrate that working in trapping gas mode is advantageous due to enhanced (>15÷40%) incorporation onto the surface of functional groups related to both oxygen and nitrogen species. |
doi_str_mv | 10.1016/j.matlet.2021.130832 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2600352443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167577X21015299</els_id><sourcerecordid>2600352443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-6dac12fc825920438281bf9cba3734be3f42e5f60393cee3f26e0564afa86a7b3</originalsourceid><addsrcrecordid>eNp9kMlOwzAQhi0EEqXwBhwscU7wlu2ChCo2qRKXInFBluOMi0MSF9tt1bcnJZw5zYzm_2f5ELqmJKWE5rdt2qvYQUwZYTSlnJScnaAZLQueiKqoTtFslBVJVhTv5-gihJYQIioiZuhjpWznvB3WOH4C3jv_dczXKmDTuT2ODtt-490Ofvth643SgHvXWGO1itYN2Bm86VToVRI9qAgN3rju0IMPl-jMqC7A1V-co7fHh9XiOVm-Pr0s7peJZrmISd4oTZnRJcsqRgQvWUlrU-la8YKLGrgRDDKTE15xDWPJciBZLpRRZa6Kms_RzTR3vPR7CyHK1m39MK6ULCeEZ0wIPqrEpNLeheDByI23vfIHSYk8gpStnEDKI0g5gRxtd5MNxg92FrwM2sKgobEedJSNs_8P-AFlkX8Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2600352443</pqid></control><display><type>article</type><title>Tailoring the working gas flow to improve the surface modification of plasma-treated polymers</title><source>Elsevier ScienceDirect Journals</source><creator>Chiper, Alina Silvia</creator><creatorcontrib>Chiper, Alina Silvia</creatorcontrib><description>The paper aims to comparatively investigate the plasma-induced effects − under different discharge regimes: stationary and flowing gas (He and He + 0.5%O2) − on the surface properties of four types of polymers, with a distinct structure, degree of oxidation, and functionality. A pulsed dielectric barrier discharge is used to produce homogenous non-thermal atmospheric-pressure plasma for uniform, efficient, reproducible chemical surface processing. The discharge characteristics, specific to each mode of operation, were analyzed in correlation with the changes in the surface characteristics found following plasma exposure. The plasma treatment increases the surface hydrophilization of all tested polymers, regardless of the discharge mode of operation. Nevertheless, the optimum discharge regime for surface functionalization is correlated with the polymer structure and discharge characteristics. Thus, polypropylene and polystyrene present the maximum wettability in trapping gas mode, while poly(methyl methacrylate) and polysulfone, in the flowing gas mixture. The experimental results demonstrate that working in trapping gas mode is advantageous due to enhanced (>15÷40%) incorporation onto the surface of functional groups related to both oxygen and nitrogen species.</description><identifier>ISSN: 0167-577X</identifier><identifier>EISSN: 1873-4979</identifier><identifier>DOI: 10.1016/j.matlet.2021.130832</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Atmospheric plasma ; Dielectric barrier discharge ; Functional groups ; Gas flow ; Gas mixtures ; Helium ; Materials science ; Oxidation ; Plasma ; Plasma-treated polymer ; Polymers ; Polymethyl methacrylate ; Polystyrene resins ; Polysulfone resins ; Surface modification ; Surface properties ; Trapping ; Trapping gas ; Wettability</subject><ispartof>Materials letters, 2021-12, Vol.305, p.130832, Article 130832</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-6dac12fc825920438281bf9cba3734be3f42e5f60393cee3f26e0564afa86a7b3</citedby><cites>FETCH-LOGICAL-c264t-6dac12fc825920438281bf9cba3734be3f42e5f60393cee3f26e0564afa86a7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matlet.2021.130832$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Chiper, Alina Silvia</creatorcontrib><title>Tailoring the working gas flow to improve the surface modification of plasma-treated polymers</title><title>Materials letters</title><description>The paper aims to comparatively investigate the plasma-induced effects − under different discharge regimes: stationary and flowing gas (He and He + 0.5%O2) − on the surface properties of four types of polymers, with a distinct structure, degree of oxidation, and functionality. A pulsed dielectric barrier discharge is used to produce homogenous non-thermal atmospheric-pressure plasma for uniform, efficient, reproducible chemical surface processing. The discharge characteristics, specific to each mode of operation, were analyzed in correlation with the changes in the surface characteristics found following plasma exposure. The plasma treatment increases the surface hydrophilization of all tested polymers, regardless of the discharge mode of operation. Nevertheless, the optimum discharge regime for surface functionalization is correlated with the polymer structure and discharge characteristics. Thus, polypropylene and polystyrene present the maximum wettability in trapping gas mode, while poly(methyl methacrylate) and polysulfone, in the flowing gas mixture. The experimental results demonstrate that working in trapping gas mode is advantageous due to enhanced (>15÷40%) incorporation onto the surface of functional groups related to both oxygen and nitrogen species.</description><subject>Atmospheric plasma</subject><subject>Dielectric barrier discharge</subject><subject>Functional groups</subject><subject>Gas flow</subject><subject>Gas mixtures</subject><subject>Helium</subject><subject>Materials science</subject><subject>Oxidation</subject><subject>Plasma</subject><subject>Plasma-treated polymer</subject><subject>Polymers</subject><subject>Polymethyl methacrylate</subject><subject>Polystyrene resins</subject><subject>Polysulfone resins</subject><subject>Surface modification</subject><subject>Surface properties</subject><subject>Trapping</subject><subject>Trapping gas</subject><subject>Wettability</subject><issn>0167-577X</issn><issn>1873-4979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAQhi0EEqXwBhwscU7wlu2ChCo2qRKXInFBluOMi0MSF9tt1bcnJZw5zYzm_2f5ELqmJKWE5rdt2qvYQUwZYTSlnJScnaAZLQueiKqoTtFslBVJVhTv5-gihJYQIioiZuhjpWznvB3WOH4C3jv_dczXKmDTuT2ODtt-490Ofvth643SgHvXWGO1itYN2Bm86VToVRI9qAgN3rju0IMPl-jMqC7A1V-co7fHh9XiOVm-Pr0s7peJZrmISd4oTZnRJcsqRgQvWUlrU-la8YKLGrgRDDKTE15xDWPJciBZLpRRZa6Kms_RzTR3vPR7CyHK1m39MK6ULCeEZ0wIPqrEpNLeheDByI23vfIHSYk8gpStnEDKI0g5gRxtd5MNxg92FrwM2sKgobEedJSNs_8P-AFlkX8Z</recordid><startdate>20211215</startdate><enddate>20211215</enddate><creator>Chiper, Alina Silvia</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20211215</creationdate><title>Tailoring the working gas flow to improve the surface modification of plasma-treated polymers</title><author>Chiper, Alina Silvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-6dac12fc825920438281bf9cba3734be3f42e5f60393cee3f26e0564afa86a7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric plasma</topic><topic>Dielectric barrier discharge</topic><topic>Functional groups</topic><topic>Gas flow</topic><topic>Gas mixtures</topic><topic>Helium</topic><topic>Materials science</topic><topic>Oxidation</topic><topic>Plasma</topic><topic>Plasma-treated polymer</topic><topic>Polymers</topic><topic>Polymethyl methacrylate</topic><topic>Polystyrene resins</topic><topic>Polysulfone resins</topic><topic>Surface modification</topic><topic>Surface properties</topic><topic>Trapping</topic><topic>Trapping gas</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiper, Alina Silvia</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiper, Alina Silvia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring the working gas flow to improve the surface modification of plasma-treated polymers</atitle><jtitle>Materials letters</jtitle><date>2021-12-15</date><risdate>2021</risdate><volume>305</volume><spage>130832</spage><pages>130832-</pages><artnum>130832</artnum><issn>0167-577X</issn><eissn>1873-4979</eissn><abstract>The paper aims to comparatively investigate the plasma-induced effects − under different discharge regimes: stationary and flowing gas (He and He + 0.5%O2) − on the surface properties of four types of polymers, with a distinct structure, degree of oxidation, and functionality. A pulsed dielectric barrier discharge is used to produce homogenous non-thermal atmospheric-pressure plasma for uniform, efficient, reproducible chemical surface processing. The discharge characteristics, specific to each mode of operation, were analyzed in correlation with the changes in the surface characteristics found following plasma exposure. The plasma treatment increases the surface hydrophilization of all tested polymers, regardless of the discharge mode of operation. Nevertheless, the optimum discharge regime for surface functionalization is correlated with the polymer structure and discharge characteristics. Thus, polypropylene and polystyrene present the maximum wettability in trapping gas mode, while poly(methyl methacrylate) and polysulfone, in the flowing gas mixture. The experimental results demonstrate that working in trapping gas mode is advantageous due to enhanced (>15÷40%) incorporation onto the surface of functional groups related to both oxygen and nitrogen species.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matlet.2021.130832</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-577X |
ispartof | Materials letters, 2021-12, Vol.305, p.130832, Article 130832 |
issn | 0167-577X 1873-4979 |
language | eng |
recordid | cdi_proquest_journals_2600352443 |
source | Elsevier ScienceDirect Journals |
subjects | Atmospheric plasma Dielectric barrier discharge Functional groups Gas flow Gas mixtures Helium Materials science Oxidation Plasma Plasma-treated polymer Polymers Polymethyl methacrylate Polystyrene resins Polysulfone resins Surface modification Surface properties Trapping Trapping gas Wettability |
title | Tailoring the working gas flow to improve the surface modification of plasma-treated polymers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20the%20working%20gas%20flow%20to%20improve%20the%20surface%20modification%20of%20plasma-treated%20polymers&rft.jtitle=Materials%20letters&rft.au=Chiper,%20Alina%20Silvia&rft.date=2021-12-15&rft.volume=305&rft.spage=130832&rft.pages=130832-&rft.artnum=130832&rft.issn=0167-577X&rft.eissn=1873-4979&rft_id=info:doi/10.1016/j.matlet.2021.130832&rft_dat=%3Cproquest_cross%3E2600352443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2600352443&rft_id=info:pmid/&rft_els_id=S0167577X21015299&rfr_iscdi=true |