Tailoring the working gas flow to improve the surface modification of plasma-treated polymers

The paper aims to comparatively investigate the plasma-induced effects − under different discharge regimes: stationary and flowing gas (He and He + 0.5%O2) − on the surface properties of four types of polymers, with a distinct structure, degree of oxidation, and functionality. A pulsed dielectric ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials letters 2021-12, Vol.305, p.130832, Article 130832
1. Verfasser: Chiper, Alina Silvia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 130832
container_title Materials letters
container_volume 305
creator Chiper, Alina Silvia
description The paper aims to comparatively investigate the plasma-induced effects − under different discharge regimes: stationary and flowing gas (He and He + 0.5%O2) − on the surface properties of four types of polymers, with a distinct structure, degree of oxidation, and functionality. A pulsed dielectric barrier discharge is used to produce homogenous non-thermal atmospheric-pressure plasma for uniform, efficient, reproducible chemical surface processing. The discharge characteristics, specific to each mode of operation, were analyzed in correlation with the changes in the surface characteristics found following plasma exposure. The plasma treatment increases the surface hydrophilization of all tested polymers, regardless of the discharge mode of operation. Nevertheless, the optimum discharge regime for surface functionalization is correlated with the polymer structure and discharge characteristics. Thus, polypropylene and polystyrene present the maximum wettability in trapping gas mode, while poly(methyl methacrylate) and polysulfone, in the flowing gas mixture. The experimental results demonstrate that working in trapping gas mode is advantageous due to enhanced (>15÷40%) incorporation onto the surface of functional groups related to both oxygen and nitrogen species.
doi_str_mv 10.1016/j.matlet.2021.130832
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2600352443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167577X21015299</els_id><sourcerecordid>2600352443</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-6dac12fc825920438281bf9cba3734be3f42e5f60393cee3f26e0564afa86a7b3</originalsourceid><addsrcrecordid>eNp9kMlOwzAQhi0EEqXwBhwscU7wlu2ChCo2qRKXInFBluOMi0MSF9tt1bcnJZw5zYzm_2f5ELqmJKWE5rdt2qvYQUwZYTSlnJScnaAZLQueiKqoTtFslBVJVhTv5-gihJYQIioiZuhjpWznvB3WOH4C3jv_dczXKmDTuT2ODtt-490Ofvth643SgHvXWGO1itYN2Bm86VToVRI9qAgN3rju0IMPl-jMqC7A1V-co7fHh9XiOVm-Pr0s7peJZrmISd4oTZnRJcsqRgQvWUlrU-la8YKLGrgRDDKTE15xDWPJciBZLpRRZa6Kms_RzTR3vPR7CyHK1m39MK6ULCeEZ0wIPqrEpNLeheDByI23vfIHSYk8gpStnEDKI0g5gRxtd5MNxg92FrwM2sKgobEedJSNs_8P-AFlkX8Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2600352443</pqid></control><display><type>article</type><title>Tailoring the working gas flow to improve the surface modification of plasma-treated polymers</title><source>Elsevier ScienceDirect Journals</source><creator>Chiper, Alina Silvia</creator><creatorcontrib>Chiper, Alina Silvia</creatorcontrib><description>The paper aims to comparatively investigate the plasma-induced effects − under different discharge regimes: stationary and flowing gas (He and He + 0.5%O2) − on the surface properties of four types of polymers, with a distinct structure, degree of oxidation, and functionality. A pulsed dielectric barrier discharge is used to produce homogenous non-thermal atmospheric-pressure plasma for uniform, efficient, reproducible chemical surface processing. The discharge characteristics, specific to each mode of operation, were analyzed in correlation with the changes in the surface characteristics found following plasma exposure. The plasma treatment increases the surface hydrophilization of all tested polymers, regardless of the discharge mode of operation. Nevertheless, the optimum discharge regime for surface functionalization is correlated with the polymer structure and discharge characteristics. Thus, polypropylene and polystyrene present the maximum wettability in trapping gas mode, while poly(methyl methacrylate) and polysulfone, in the flowing gas mixture. The experimental results demonstrate that working in trapping gas mode is advantageous due to enhanced (&gt;15÷40%) incorporation onto the surface of functional groups related to both oxygen and nitrogen species.</description><identifier>ISSN: 0167-577X</identifier><identifier>EISSN: 1873-4979</identifier><identifier>DOI: 10.1016/j.matlet.2021.130832</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Atmospheric plasma ; Dielectric barrier discharge ; Functional groups ; Gas flow ; Gas mixtures ; Helium ; Materials science ; Oxidation ; Plasma ; Plasma-treated polymer ; Polymers ; Polymethyl methacrylate ; Polystyrene resins ; Polysulfone resins ; Surface modification ; Surface properties ; Trapping ; Trapping gas ; Wettability</subject><ispartof>Materials letters, 2021-12, Vol.305, p.130832, Article 130832</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Dec 15, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-6dac12fc825920438281bf9cba3734be3f42e5f60393cee3f26e0564afa86a7b3</citedby><cites>FETCH-LOGICAL-c264t-6dac12fc825920438281bf9cba3734be3f42e5f60393cee3f26e0564afa86a7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.matlet.2021.130832$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Chiper, Alina Silvia</creatorcontrib><title>Tailoring the working gas flow to improve the surface modification of plasma-treated polymers</title><title>Materials letters</title><description>The paper aims to comparatively investigate the plasma-induced effects − under different discharge regimes: stationary and flowing gas (He and He + 0.5%O2) − on the surface properties of four types of polymers, with a distinct structure, degree of oxidation, and functionality. A pulsed dielectric barrier discharge is used to produce homogenous non-thermal atmospheric-pressure plasma for uniform, efficient, reproducible chemical surface processing. The discharge characteristics, specific to each mode of operation, were analyzed in correlation with the changes in the surface characteristics found following plasma exposure. The plasma treatment increases the surface hydrophilization of all tested polymers, regardless of the discharge mode of operation. Nevertheless, the optimum discharge regime for surface functionalization is correlated with the polymer structure and discharge characteristics. Thus, polypropylene and polystyrene present the maximum wettability in trapping gas mode, while poly(methyl methacrylate) and polysulfone, in the flowing gas mixture. The experimental results demonstrate that working in trapping gas mode is advantageous due to enhanced (&gt;15÷40%) incorporation onto the surface of functional groups related to both oxygen and nitrogen species.</description><subject>Atmospheric plasma</subject><subject>Dielectric barrier discharge</subject><subject>Functional groups</subject><subject>Gas flow</subject><subject>Gas mixtures</subject><subject>Helium</subject><subject>Materials science</subject><subject>Oxidation</subject><subject>Plasma</subject><subject>Plasma-treated polymer</subject><subject>Polymers</subject><subject>Polymethyl methacrylate</subject><subject>Polystyrene resins</subject><subject>Polysulfone resins</subject><subject>Surface modification</subject><subject>Surface properties</subject><subject>Trapping</subject><subject>Trapping gas</subject><subject>Wettability</subject><issn>0167-577X</issn><issn>1873-4979</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMlOwzAQhi0EEqXwBhwscU7wlu2ChCo2qRKXInFBluOMi0MSF9tt1bcnJZw5zYzm_2f5ELqmJKWE5rdt2qvYQUwZYTSlnJScnaAZLQueiKqoTtFslBVJVhTv5-gihJYQIioiZuhjpWznvB3WOH4C3jv_dczXKmDTuT2ODtt-490Ofvth643SgHvXWGO1itYN2Bm86VToVRI9qAgN3rju0IMPl-jMqC7A1V-co7fHh9XiOVm-Pr0s7peJZrmISd4oTZnRJcsqRgQvWUlrU-la8YKLGrgRDDKTE15xDWPJciBZLpRRZa6Kms_RzTR3vPR7CyHK1m39MK6ULCeEZ0wIPqrEpNLeheDByI23vfIHSYk8gpStnEDKI0g5gRxtd5MNxg92FrwM2sKgobEedJSNs_8P-AFlkX8Z</recordid><startdate>20211215</startdate><enddate>20211215</enddate><creator>Chiper, Alina Silvia</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20211215</creationdate><title>Tailoring the working gas flow to improve the surface modification of plasma-treated polymers</title><author>Chiper, Alina Silvia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-6dac12fc825920438281bf9cba3734be3f42e5f60393cee3f26e0564afa86a7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atmospheric plasma</topic><topic>Dielectric barrier discharge</topic><topic>Functional groups</topic><topic>Gas flow</topic><topic>Gas mixtures</topic><topic>Helium</topic><topic>Materials science</topic><topic>Oxidation</topic><topic>Plasma</topic><topic>Plasma-treated polymer</topic><topic>Polymers</topic><topic>Polymethyl methacrylate</topic><topic>Polystyrene resins</topic><topic>Polysulfone resins</topic><topic>Surface modification</topic><topic>Surface properties</topic><topic>Trapping</topic><topic>Trapping gas</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiper, Alina Silvia</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chiper, Alina Silvia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tailoring the working gas flow to improve the surface modification of plasma-treated polymers</atitle><jtitle>Materials letters</jtitle><date>2021-12-15</date><risdate>2021</risdate><volume>305</volume><spage>130832</spage><pages>130832-</pages><artnum>130832</artnum><issn>0167-577X</issn><eissn>1873-4979</eissn><abstract>The paper aims to comparatively investigate the plasma-induced effects − under different discharge regimes: stationary and flowing gas (He and He + 0.5%O2) − on the surface properties of four types of polymers, with a distinct structure, degree of oxidation, and functionality. A pulsed dielectric barrier discharge is used to produce homogenous non-thermal atmospheric-pressure plasma for uniform, efficient, reproducible chemical surface processing. The discharge characteristics, specific to each mode of operation, were analyzed in correlation with the changes in the surface characteristics found following plasma exposure. The plasma treatment increases the surface hydrophilization of all tested polymers, regardless of the discharge mode of operation. Nevertheless, the optimum discharge regime for surface functionalization is correlated with the polymer structure and discharge characteristics. Thus, polypropylene and polystyrene present the maximum wettability in trapping gas mode, while poly(methyl methacrylate) and polysulfone, in the flowing gas mixture. The experimental results demonstrate that working in trapping gas mode is advantageous due to enhanced (&gt;15÷40%) incorporation onto the surface of functional groups related to both oxygen and nitrogen species.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.matlet.2021.130832</doi></addata></record>
fulltext fulltext
identifier ISSN: 0167-577X
ispartof Materials letters, 2021-12, Vol.305, p.130832, Article 130832
issn 0167-577X
1873-4979
language eng
recordid cdi_proquest_journals_2600352443
source Elsevier ScienceDirect Journals
subjects Atmospheric plasma
Dielectric barrier discharge
Functional groups
Gas flow
Gas mixtures
Helium
Materials science
Oxidation
Plasma
Plasma-treated polymer
Polymers
Polymethyl methacrylate
Polystyrene resins
Polysulfone resins
Surface modification
Surface properties
Trapping
Trapping gas
Wettability
title Tailoring the working gas flow to improve the surface modification of plasma-treated polymers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tailoring%20the%20working%20gas%20flow%20to%20improve%20the%20surface%20modification%20of%20plasma-treated%20polymers&rft.jtitle=Materials%20letters&rft.au=Chiper,%20Alina%20Silvia&rft.date=2021-12-15&rft.volume=305&rft.spage=130832&rft.pages=130832-&rft.artnum=130832&rft.issn=0167-577X&rft.eissn=1873-4979&rft_id=info:doi/10.1016/j.matlet.2021.130832&rft_dat=%3Cproquest_cross%3E2600352443%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2600352443&rft_id=info:pmid/&rft_els_id=S0167577X21015299&rfr_iscdi=true