Machine learning aided phase field method for fracture mechanics

A machine learning aided non-deterministic damage prediction framework against both 2D and 3D fracture problems is presented in this paper. By introducing a newly developed extended support vector regression (X-SVR) with generalized Dirichlet feature mapping into the phase field crack growth model,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of engineering science 2021-12, Vol.169, p.103587, Article 103587
Hauptverfasser: Feng, Yuan, Wang, Qihan, Wu, Di, Luo, Zhen, Chen, Xiaojun, Zhang, Tianyu, Gao, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103587
container_title International journal of engineering science
container_volume 169
creator Feng, Yuan
Wang, Qihan
Wu, Di
Luo, Zhen
Chen, Xiaojun
Zhang, Tianyu
Gao, Wei
description A machine learning aided non-deterministic damage prediction framework against both 2D and 3D fracture problems is presented in this paper. By introducing a newly developed extended support vector regression (X-SVR) with generalized Dirichlet feature mapping into the phase field crack growth model, a damage assessment method that contains both crack diagnosis and prognosis is designed. Within the proposed analysis framework, the intricate fracture mechanism of practical engineering system can be learnt by the X-SVR model so a continuous damage diagnosis-prognosis loop can be established to assess the latest working condition of the structure. The proposed framework is applicable not only for quantifying and then assessing the current working conditions, but also for predicting the potentially crack propagation against the future forecasted information. Compared with the established experimental records and numerical result, the accuracy, effectiveness, and computational efficiency of the proposed framework are fully verified.
doi_str_mv 10.1016/j.ijengsci.2021.103587
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2600350510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020722521001294</els_id><sourcerecordid>2600350510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-5dfdbc03159423b436bf1e87701003c20b8df2e481d4c0f454580ae6765764c73</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt_QQZcT73J5DGzq4gvqLjRdcgkN50M7UxNpoL_3pTq2tWFwznncj5CriksKFB52y9Cj8M62bBgwGgWK1GrEzKjtWpKRht1SmYADErFmDgnFyn1ACCqppmR5auxXRiw2KCJQxjWhQkOXbHrTMLCB9y4YotTN7rCj7Hw0dhpHzFrtjNDsOmSnHmzSXj1e-fk4_Hh_f65XL09vdzfrUrLQU6lcN61FioqGs6qlley9RRrpYACVJZBWzvPkNfUcQueCy5qMCiVFEpyq6o5uTn27uL4ucc06X7cxyG_1EzmCgEiD58TeXTZOKYU0etdDFsTvzUFfaCle_1HSx9o6SOtHFweg5g3fAWMOjtwsOhCRDtpN4b_Kn4AvWZ0zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2600350510</pqid></control><display><type>article</type><title>Machine learning aided phase field method for fracture mechanics</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Feng, Yuan ; Wang, Qihan ; Wu, Di ; Luo, Zhen ; Chen, Xiaojun ; Zhang, Tianyu ; Gao, Wei</creator><creatorcontrib>Feng, Yuan ; Wang, Qihan ; Wu, Di ; Luo, Zhen ; Chen, Xiaojun ; Zhang, Tianyu ; Gao, Wei</creatorcontrib><description>A machine learning aided non-deterministic damage prediction framework against both 2D and 3D fracture problems is presented in this paper. By introducing a newly developed extended support vector regression (X-SVR) with generalized Dirichlet feature mapping into the phase field crack growth model, a damage assessment method that contains both crack diagnosis and prognosis is designed. Within the proposed analysis framework, the intricate fracture mechanism of practical engineering system can be learnt by the X-SVR model so a continuous damage diagnosis-prognosis loop can be established to assess the latest working condition of the structure. The proposed framework is applicable not only for quantifying and then assessing the current working conditions, but also for predicting the potentially crack propagation against the future forecasted information. Compared with the established experimental records and numerical result, the accuracy, effectiveness, and computational efficiency of the proposed framework are fully verified.</description><identifier>ISSN: 0020-7225</identifier><identifier>EISSN: 1879-2197</identifier><identifier>DOI: 10.1016/j.ijengsci.2021.103587</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Crack propagation ; Damage assessment ; Diagnosis ; Dirichlet problem ; Engineering ; Fracture mechanics ; Fractures ; Information update ; Machine learning ; Non-deterministic damage prediction ; Phase field analysis ; Prognosis ; Support vector machines</subject><ispartof>International journal of engineering science, 2021-12, Vol.169, p.103587, Article 103587</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 1, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-5dfdbc03159423b436bf1e87701003c20b8df2e481d4c0f454580ae6765764c73</citedby><cites>FETCH-LOGICAL-c406t-5dfdbc03159423b436bf1e87701003c20b8df2e481d4c0f454580ae6765764c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijengsci.2021.103587$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Feng, Yuan</creatorcontrib><creatorcontrib>Wang, Qihan</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Luo, Zhen</creatorcontrib><creatorcontrib>Chen, Xiaojun</creatorcontrib><creatorcontrib>Zhang, Tianyu</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><title>Machine learning aided phase field method for fracture mechanics</title><title>International journal of engineering science</title><description>A machine learning aided non-deterministic damage prediction framework against both 2D and 3D fracture problems is presented in this paper. By introducing a newly developed extended support vector regression (X-SVR) with generalized Dirichlet feature mapping into the phase field crack growth model, a damage assessment method that contains both crack diagnosis and prognosis is designed. Within the proposed analysis framework, the intricate fracture mechanism of practical engineering system can be learnt by the X-SVR model so a continuous damage diagnosis-prognosis loop can be established to assess the latest working condition of the structure. The proposed framework is applicable not only for quantifying and then assessing the current working conditions, but also for predicting the potentially crack propagation against the future forecasted information. Compared with the established experimental records and numerical result, the accuracy, effectiveness, and computational efficiency of the proposed framework are fully verified.</description><subject>Crack propagation</subject><subject>Damage assessment</subject><subject>Diagnosis</subject><subject>Dirichlet problem</subject><subject>Engineering</subject><subject>Fracture mechanics</subject><subject>Fractures</subject><subject>Information update</subject><subject>Machine learning</subject><subject>Non-deterministic damage prediction</subject><subject>Phase field analysis</subject><subject>Prognosis</subject><subject>Support vector machines</subject><issn>0020-7225</issn><issn>1879-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKt_QQZcT73J5DGzq4gvqLjRdcgkN50M7UxNpoL_3pTq2tWFwznncj5CriksKFB52y9Cj8M62bBgwGgWK1GrEzKjtWpKRht1SmYADErFmDgnFyn1ACCqppmR5auxXRiw2KCJQxjWhQkOXbHrTMLCB9y4YotTN7rCj7Hw0dhpHzFrtjNDsOmSnHmzSXj1e-fk4_Hh_f65XL09vdzfrUrLQU6lcN61FioqGs6qlley9RRrpYACVJZBWzvPkNfUcQueCy5qMCiVFEpyq6o5uTn27uL4ucc06X7cxyG_1EzmCgEiD58TeXTZOKYU0etdDFsTvzUFfaCle_1HSx9o6SOtHFweg5g3fAWMOjtwsOhCRDtpN4b_Kn4AvWZ0zA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Feng, Yuan</creator><creator>Wang, Qihan</creator><creator>Wu, Di</creator><creator>Luo, Zhen</creator><creator>Chen, Xiaojun</creator><creator>Zhang, Tianyu</creator><creator>Gao, Wei</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20211201</creationdate><title>Machine learning aided phase field method for fracture mechanics</title><author>Feng, Yuan ; Wang, Qihan ; Wu, Di ; Luo, Zhen ; Chen, Xiaojun ; Zhang, Tianyu ; Gao, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-5dfdbc03159423b436bf1e87701003c20b8df2e481d4c0f454580ae6765764c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Crack propagation</topic><topic>Damage assessment</topic><topic>Diagnosis</topic><topic>Dirichlet problem</topic><topic>Engineering</topic><topic>Fracture mechanics</topic><topic>Fractures</topic><topic>Information update</topic><topic>Machine learning</topic><topic>Non-deterministic damage prediction</topic><topic>Phase field analysis</topic><topic>Prognosis</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Yuan</creatorcontrib><creatorcontrib>Wang, Qihan</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Luo, Zhen</creatorcontrib><creatorcontrib>Chen, Xiaojun</creatorcontrib><creatorcontrib>Zhang, Tianyu</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of engineering science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Yuan</au><au>Wang, Qihan</au><au>Wu, Di</au><au>Luo, Zhen</au><au>Chen, Xiaojun</au><au>Zhang, Tianyu</au><au>Gao, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning aided phase field method for fracture mechanics</atitle><jtitle>International journal of engineering science</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>169</volume><spage>103587</spage><pages>103587-</pages><artnum>103587</artnum><issn>0020-7225</issn><eissn>1879-2197</eissn><abstract>A machine learning aided non-deterministic damage prediction framework against both 2D and 3D fracture problems is presented in this paper. By introducing a newly developed extended support vector regression (X-SVR) with generalized Dirichlet feature mapping into the phase field crack growth model, a damage assessment method that contains both crack diagnosis and prognosis is designed. Within the proposed analysis framework, the intricate fracture mechanism of practical engineering system can be learnt by the X-SVR model so a continuous damage diagnosis-prognosis loop can be established to assess the latest working condition of the structure. The proposed framework is applicable not only for quantifying and then assessing the current working conditions, but also for predicting the potentially crack propagation against the future forecasted information. Compared with the established experimental records and numerical result, the accuracy, effectiveness, and computational efficiency of the proposed framework are fully verified.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijengsci.2021.103587</doi></addata></record>
fulltext fulltext
identifier ISSN: 0020-7225
ispartof International journal of engineering science, 2021-12, Vol.169, p.103587, Article 103587
issn 0020-7225
1879-2197
language eng
recordid cdi_proquest_journals_2600350510
source ScienceDirect Journals (5 years ago - present)
subjects Crack propagation
Damage assessment
Diagnosis
Dirichlet problem
Engineering
Fracture mechanics
Fractures
Information update
Machine learning
Non-deterministic damage prediction
Phase field analysis
Prognosis
Support vector machines
title Machine learning aided phase field method for fracture mechanics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20aided%20phase%20field%20method%20for%20fracture%20mechanics&rft.jtitle=International%20journal%20of%20engineering%20science&rft.au=Feng,%20Yuan&rft.date=2021-12-01&rft.volume=169&rft.spage=103587&rft.pages=103587-&rft.artnum=103587&rft.issn=0020-7225&rft.eissn=1879-2197&rft_id=info:doi/10.1016/j.ijengsci.2021.103587&rft_dat=%3Cproquest_cross%3E2600350510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2600350510&rft_id=info:pmid/&rft_els_id=S0020722521001294&rfr_iscdi=true