Zoometric data extraction from drone imagery: the Arabian oryx (Oryx leucoryx)

Data extraction from unmanned aerial vehicle (UAV) imagery has proved effective in animal surveys and monitoring, but to date has scarcely been used for detailed population analysis and individual animal feature extraction. We assessed the zoometric and feature extraction of the Arabian oryx (Oryx l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental conservation 2021-12, Vol.48 (4), p.295-300
Hauptverfasser: de Kock, Meyer E, O’Donovan, Declan, Khafaga, Tamer, Hejcmanová, Pavla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 300
container_issue 4
container_start_page 295
container_title Environmental conservation
container_volume 48
creator de Kock, Meyer E
O’Donovan, Declan
Khafaga, Tamer
Hejcmanová, Pavla
description Data extraction from unmanned aerial vehicle (UAV) imagery has proved effective in animal surveys and monitoring, but to date has scarcely been used for detailed population analysis and individual animal feature extraction. We assessed the zoometric and feature extraction of the Arabian oryx (Oryx leucoryx) using data acquired from a captive population for comparison with reintroduced populations monitored by UAVs. Highly accurate scaled and geo-rectified imagery derived from UAV surveys allowed precise morphometric measurements of the oryx. The scaled top-view imagery combined with baseline data from known sex, age, weight and pregnancy status of captive individuals were used to develop predictive models. A bracketed index developed from the predictive models showed high accuracy for classifying the age group ≤16 months, animals with a weight >80 kg and pregnancy. The pregnancy classification decision tree model performed with 91.7% accuracy. The polynomial weight predictive model performed well with relatively high accuracy when using the total top-view surface measurement. Photogrammetrically processed UAV-acquired imagery can yield valuable zoometric data, feature extraction and modelling; it is a tool with a practical application for field biologists that can assist in the decision-making process for species conservation management.
doi_str_mv 10.1017/S0376892921000242
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2600274366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0376892921000242</cupid><sourcerecordid>2600274366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-be5372bc505727ea2cbfbe4703f7510f0d1af34582d3224fafa0db26c1eaad6d3</originalsourceid><addsrcrecordid>eNp1UMtKw0AUHUTBWv0AdwNudBGdV2ZSd6X4gmIX6sZNmMedmtJk6mQKzd-b0IILcXMvl_O4nIPQJSW3lFB190a4ksWETRglhDDBjtCICjnJBC_UMRoNcDbgp-isbVc9R-aqGKHXzxBqSLGy2OmkMexS1DZVocE-hhq7GBrAVa2XELt7nL4AT6M2lW5wiN0OXy-GuYatHc6bc3Ti9bqFi8Meo4_Hh_fZczZfPL3MpvPMcqpSZiDnihmbk1wxBZpZ4w0IRbhXOSWeOKo9F3nBHGdMeO01cYZJS0FrJx0fo6u97yaG7y20qVyFbWz6lyWTfX4luJQ9i-5ZNoa2jeDLTeyjxK6kpBxqK__U1mv4QaNrEyu3hF_r_1U_e4hvKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2600274366</pqid></control><display><type>article</type><title>Zoometric data extraction from drone imagery: the Arabian oryx (Oryx leucoryx)</title><source>Cambridge University Press Journals Complete</source><creator>de Kock, Meyer E ; O’Donovan, Declan ; Khafaga, Tamer ; Hejcmanová, Pavla</creator><creatorcontrib>de Kock, Meyer E ; O’Donovan, Declan ; Khafaga, Tamer ; Hejcmanová, Pavla</creatorcontrib><description>Data extraction from unmanned aerial vehicle (UAV) imagery has proved effective in animal surveys and monitoring, but to date has scarcely been used for detailed population analysis and individual animal feature extraction. We assessed the zoometric and feature extraction of the Arabian oryx (Oryx leucoryx) using data acquired from a captive population for comparison with reintroduced populations monitored by UAVs. Highly accurate scaled and geo-rectified imagery derived from UAV surveys allowed precise morphometric measurements of the oryx. The scaled top-view imagery combined with baseline data from known sex, age, weight and pregnancy status of captive individuals were used to develop predictive models. A bracketed index developed from the predictive models showed high accuracy for classifying the age group ≤16 months, animals with a weight &gt;80 kg and pregnancy. The pregnancy classification decision tree model performed with 91.7% accuracy. The polynomial weight predictive model performed well with relatively high accuracy when using the total top-view surface measurement. Photogrammetrically processed UAV-acquired imagery can yield valuable zoometric data, feature extraction and modelling; it is a tool with a practical application for field biologists that can assist in the decision-making process for species conservation management.</description><identifier>ISSN: 0376-8929</identifier><identifier>EISSN: 1469-4387</identifier><identifier>DOI: 10.1017/S0376892921000242</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Accuracy ; Aerial surveys ; Age groups ; Altitude ; Animals ; Cameras ; Classification ; Data acquisition ; Decision making ; Decision trees ; Drone aircraft ; Environmental monitoring ; Feature extraction ; Image acquisition ; Non-Thematic Section ; Oryx leucoryx ; Performance prediction ; Photogrammetry ; Polynomials ; Population studies ; Prediction models ; Pregnancy ; Research Paper ; Unmanned aerial vehicles ; Weight ; Wildlife conservation</subject><ispartof>Environmental conservation, 2021-12, Vol.48 (4), p.295-300</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press on behalf of Foundation for Environmental Conservation</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-be5372bc505727ea2cbfbe4703f7510f0d1af34582d3224fafa0db26c1eaad6d3</citedby><cites>FETCH-LOGICAL-c317t-be5372bc505727ea2cbfbe4703f7510f0d1af34582d3224fafa0db26c1eaad6d3</cites><orcidid>0000-0002-3045-0323 ; 0000-0001-9547-4302 ; 0000-0002-6324-7989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0376892921000242/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>de Kock, Meyer E</creatorcontrib><creatorcontrib>O’Donovan, Declan</creatorcontrib><creatorcontrib>Khafaga, Tamer</creatorcontrib><creatorcontrib>Hejcmanová, Pavla</creatorcontrib><title>Zoometric data extraction from drone imagery: the Arabian oryx (Oryx leucoryx)</title><title>Environmental conservation</title><addtitle>Envir. Conserv</addtitle><description>Data extraction from unmanned aerial vehicle (UAV) imagery has proved effective in animal surveys and monitoring, but to date has scarcely been used for detailed population analysis and individual animal feature extraction. We assessed the zoometric and feature extraction of the Arabian oryx (Oryx leucoryx) using data acquired from a captive population for comparison with reintroduced populations monitored by UAVs. Highly accurate scaled and geo-rectified imagery derived from UAV surveys allowed precise morphometric measurements of the oryx. The scaled top-view imagery combined with baseline data from known sex, age, weight and pregnancy status of captive individuals were used to develop predictive models. A bracketed index developed from the predictive models showed high accuracy for classifying the age group ≤16 months, animals with a weight &gt;80 kg and pregnancy. The pregnancy classification decision tree model performed with 91.7% accuracy. The polynomial weight predictive model performed well with relatively high accuracy when using the total top-view surface measurement. Photogrammetrically processed UAV-acquired imagery can yield valuable zoometric data, feature extraction and modelling; it is a tool with a practical application for field biologists that can assist in the decision-making process for species conservation management.</description><subject>Accuracy</subject><subject>Aerial surveys</subject><subject>Age groups</subject><subject>Altitude</subject><subject>Animals</subject><subject>Cameras</subject><subject>Classification</subject><subject>Data acquisition</subject><subject>Decision making</subject><subject>Decision trees</subject><subject>Drone aircraft</subject><subject>Environmental monitoring</subject><subject>Feature extraction</subject><subject>Image acquisition</subject><subject>Non-Thematic Section</subject><subject>Oryx leucoryx</subject><subject>Performance prediction</subject><subject>Photogrammetry</subject><subject>Polynomials</subject><subject>Population studies</subject><subject>Prediction models</subject><subject>Pregnancy</subject><subject>Research Paper</subject><subject>Unmanned aerial vehicles</subject><subject>Weight</subject><subject>Wildlife conservation</subject><issn>0376-8929</issn><issn>1469-4387</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UMtKw0AUHUTBWv0AdwNudBGdV2ZSd6X4gmIX6sZNmMedmtJk6mQKzd-b0IILcXMvl_O4nIPQJSW3lFB190a4ksWETRglhDDBjtCICjnJBC_UMRoNcDbgp-isbVc9R-aqGKHXzxBqSLGy2OmkMexS1DZVocE-hhq7GBrAVa2XELt7nL4AT6M2lW5wiN0OXy-GuYatHc6bc3Ti9bqFi8Meo4_Hh_fZczZfPL3MpvPMcqpSZiDnihmbk1wxBZpZ4w0IRbhXOSWeOKo9F3nBHGdMeO01cYZJS0FrJx0fo6u97yaG7y20qVyFbWz6lyWTfX4luJQ9i-5ZNoa2jeDLTeyjxK6kpBxqK__U1mv4QaNrEyu3hF_r_1U_e4hvKA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>de Kock, Meyer E</creator><creator>O’Donovan, Declan</creator><creator>Khafaga, Tamer</creator><creator>Hejcmanová, Pavla</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3045-0323</orcidid><orcidid>https://orcid.org/0000-0001-9547-4302</orcidid><orcidid>https://orcid.org/0000-0002-6324-7989</orcidid></search><sort><creationdate>20211201</creationdate><title>Zoometric data extraction from drone imagery: the Arabian oryx (Oryx leucoryx)</title><author>de Kock, Meyer E ; O’Donovan, Declan ; Khafaga, Tamer ; Hejcmanová, Pavla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-be5372bc505727ea2cbfbe4703f7510f0d1af34582d3224fafa0db26c1eaad6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Aerial surveys</topic><topic>Age groups</topic><topic>Altitude</topic><topic>Animals</topic><topic>Cameras</topic><topic>Classification</topic><topic>Data acquisition</topic><topic>Decision making</topic><topic>Decision trees</topic><topic>Drone aircraft</topic><topic>Environmental monitoring</topic><topic>Feature extraction</topic><topic>Image acquisition</topic><topic>Non-Thematic Section</topic><topic>Oryx leucoryx</topic><topic>Performance prediction</topic><topic>Photogrammetry</topic><topic>Polynomials</topic><topic>Population studies</topic><topic>Prediction models</topic><topic>Pregnancy</topic><topic>Research Paper</topic><topic>Unmanned aerial vehicles</topic><topic>Weight</topic><topic>Wildlife conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Kock, Meyer E</creatorcontrib><creatorcontrib>O’Donovan, Declan</creatorcontrib><creatorcontrib>Khafaga, Tamer</creatorcontrib><creatorcontrib>Hejcmanová, Pavla</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental conservation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Kock, Meyer E</au><au>O’Donovan, Declan</au><au>Khafaga, Tamer</au><au>Hejcmanová, Pavla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zoometric data extraction from drone imagery: the Arabian oryx (Oryx leucoryx)</atitle><jtitle>Environmental conservation</jtitle><addtitle>Envir. Conserv</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>48</volume><issue>4</issue><spage>295</spage><epage>300</epage><pages>295-300</pages><issn>0376-8929</issn><eissn>1469-4387</eissn><abstract>Data extraction from unmanned aerial vehicle (UAV) imagery has proved effective in animal surveys and monitoring, but to date has scarcely been used for detailed population analysis and individual animal feature extraction. We assessed the zoometric and feature extraction of the Arabian oryx (Oryx leucoryx) using data acquired from a captive population for comparison with reintroduced populations monitored by UAVs. Highly accurate scaled and geo-rectified imagery derived from UAV surveys allowed precise morphometric measurements of the oryx. The scaled top-view imagery combined with baseline data from known sex, age, weight and pregnancy status of captive individuals were used to develop predictive models. A bracketed index developed from the predictive models showed high accuracy for classifying the age group ≤16 months, animals with a weight &gt;80 kg and pregnancy. The pregnancy classification decision tree model performed with 91.7% accuracy. The polynomial weight predictive model performed well with relatively high accuracy when using the total top-view surface measurement. Photogrammetrically processed UAV-acquired imagery can yield valuable zoometric data, feature extraction and modelling; it is a tool with a practical application for field biologists that can assist in the decision-making process for species conservation management.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0376892921000242</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3045-0323</orcidid><orcidid>https://orcid.org/0000-0001-9547-4302</orcidid><orcidid>https://orcid.org/0000-0002-6324-7989</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0376-8929
ispartof Environmental conservation, 2021-12, Vol.48 (4), p.295-300
issn 0376-8929
1469-4387
language eng
recordid cdi_proquest_journals_2600274366
source Cambridge University Press Journals Complete
subjects Accuracy
Aerial surveys
Age groups
Altitude
Animals
Cameras
Classification
Data acquisition
Decision making
Decision trees
Drone aircraft
Environmental monitoring
Feature extraction
Image acquisition
Non-Thematic Section
Oryx leucoryx
Performance prediction
Photogrammetry
Polynomials
Population studies
Prediction models
Pregnancy
Research Paper
Unmanned aerial vehicles
Weight
Wildlife conservation
title Zoometric data extraction from drone imagery: the Arabian oryx (Oryx leucoryx)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zoometric%20data%20extraction%20from%20drone%20imagery:%20the%20Arabian%20oryx%20(Oryx%20leucoryx)&rft.jtitle=Environmental%20conservation&rft.au=de%20Kock,%20Meyer%20E&rft.date=2021-12-01&rft.volume=48&rft.issue=4&rft.spage=295&rft.epage=300&rft.pages=295-300&rft.issn=0376-8929&rft.eissn=1469-4387&rft_id=info:doi/10.1017/S0376892921000242&rft_dat=%3Cproquest_cross%3E2600274366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2600274366&rft_id=info:pmid/&rft_cupid=10_1017_S0376892921000242&rfr_iscdi=true