Zoometric data extraction from drone imagery: the Arabian oryx (Oryx leucoryx)
Data extraction from unmanned aerial vehicle (UAV) imagery has proved effective in animal surveys and monitoring, but to date has scarcely been used for detailed population analysis and individual animal feature extraction. We assessed the zoometric and feature extraction of the Arabian oryx (Oryx l...
Gespeichert in:
Veröffentlicht in: | Environmental conservation 2021-12, Vol.48 (4), p.295-300 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 300 |
---|---|
container_issue | 4 |
container_start_page | 295 |
container_title | Environmental conservation |
container_volume | 48 |
creator | de Kock, Meyer E O’Donovan, Declan Khafaga, Tamer Hejcmanová, Pavla |
description | Data extraction from unmanned aerial vehicle (UAV) imagery has proved effective in animal surveys and monitoring, but to date has scarcely been used for detailed population analysis and individual animal feature extraction. We assessed the zoometric and feature extraction of the Arabian oryx (Oryx leucoryx) using data acquired from a captive population for comparison with reintroduced populations monitored by UAVs. Highly accurate scaled and geo-rectified imagery derived from UAV surveys allowed precise morphometric measurements of the oryx. The scaled top-view imagery combined with baseline data from known sex, age, weight and pregnancy status of captive individuals were used to develop predictive models. A bracketed index developed from the predictive models showed high accuracy for classifying the age group ≤16 months, animals with a weight >80 kg and pregnancy. The pregnancy classification decision tree model performed with 91.7% accuracy. The polynomial weight predictive model performed well with relatively high accuracy when using the total top-view surface measurement. Photogrammetrically processed UAV-acquired imagery can yield valuable zoometric data, feature extraction and modelling; it is a tool with a practical application for field biologists that can assist in the decision-making process for species conservation management. |
doi_str_mv | 10.1017/S0376892921000242 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2600274366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0376892921000242</cupid><sourcerecordid>2600274366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-be5372bc505727ea2cbfbe4703f7510f0d1af34582d3224fafa0db26c1eaad6d3</originalsourceid><addsrcrecordid>eNp1UMtKw0AUHUTBWv0AdwNudBGdV2ZSd6X4gmIX6sZNmMedmtJk6mQKzd-b0IILcXMvl_O4nIPQJSW3lFB190a4ksWETRglhDDBjtCICjnJBC_UMRoNcDbgp-isbVc9R-aqGKHXzxBqSLGy2OmkMexS1DZVocE-hhq7GBrAVa2XELt7nL4AT6M2lW5wiN0OXy-GuYatHc6bc3Ti9bqFi8Meo4_Hh_fZczZfPL3MpvPMcqpSZiDnihmbk1wxBZpZ4w0IRbhXOSWeOKo9F3nBHGdMeO01cYZJS0FrJx0fo6u97yaG7y20qVyFbWz6lyWTfX4luJQ9i-5ZNoa2jeDLTeyjxK6kpBxqK__U1mv4QaNrEyu3hF_r_1U_e4hvKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2600274366</pqid></control><display><type>article</type><title>Zoometric data extraction from drone imagery: the Arabian oryx (Oryx leucoryx)</title><source>Cambridge University Press Journals Complete</source><creator>de Kock, Meyer E ; O’Donovan, Declan ; Khafaga, Tamer ; Hejcmanová, Pavla</creator><creatorcontrib>de Kock, Meyer E ; O’Donovan, Declan ; Khafaga, Tamer ; Hejcmanová, Pavla</creatorcontrib><description>Data extraction from unmanned aerial vehicle (UAV) imagery has proved effective in animal surveys and monitoring, but to date has scarcely been used for detailed population analysis and individual animal feature extraction. We assessed the zoometric and feature extraction of the Arabian oryx (Oryx leucoryx) using data acquired from a captive population for comparison with reintroduced populations monitored by UAVs. Highly accurate scaled and geo-rectified imagery derived from UAV surveys allowed precise morphometric measurements of the oryx. The scaled top-view imagery combined with baseline data from known sex, age, weight and pregnancy status of captive individuals were used to develop predictive models. A bracketed index developed from the predictive models showed high accuracy for classifying the age group ≤16 months, animals with a weight >80 kg and pregnancy. The pregnancy classification decision tree model performed with 91.7% accuracy. The polynomial weight predictive model performed well with relatively high accuracy when using the total top-view surface measurement. Photogrammetrically processed UAV-acquired imagery can yield valuable zoometric data, feature extraction and modelling; it is a tool with a practical application for field biologists that can assist in the decision-making process for species conservation management.</description><identifier>ISSN: 0376-8929</identifier><identifier>EISSN: 1469-4387</identifier><identifier>DOI: 10.1017/S0376892921000242</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Accuracy ; Aerial surveys ; Age groups ; Altitude ; Animals ; Cameras ; Classification ; Data acquisition ; Decision making ; Decision trees ; Drone aircraft ; Environmental monitoring ; Feature extraction ; Image acquisition ; Non-Thematic Section ; Oryx leucoryx ; Performance prediction ; Photogrammetry ; Polynomials ; Population studies ; Prediction models ; Pregnancy ; Research Paper ; Unmanned aerial vehicles ; Weight ; Wildlife conservation</subject><ispartof>Environmental conservation, 2021-12, Vol.48 (4), p.295-300</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press on behalf of Foundation for Environmental Conservation</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-be5372bc505727ea2cbfbe4703f7510f0d1af34582d3224fafa0db26c1eaad6d3</citedby><cites>FETCH-LOGICAL-c317t-be5372bc505727ea2cbfbe4703f7510f0d1af34582d3224fafa0db26c1eaad6d3</cites><orcidid>0000-0002-3045-0323 ; 0000-0001-9547-4302 ; 0000-0002-6324-7989</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0376892921000242/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>de Kock, Meyer E</creatorcontrib><creatorcontrib>O’Donovan, Declan</creatorcontrib><creatorcontrib>Khafaga, Tamer</creatorcontrib><creatorcontrib>Hejcmanová, Pavla</creatorcontrib><title>Zoometric data extraction from drone imagery: the Arabian oryx (Oryx leucoryx)</title><title>Environmental conservation</title><addtitle>Envir. Conserv</addtitle><description>Data extraction from unmanned aerial vehicle (UAV) imagery has proved effective in animal surveys and monitoring, but to date has scarcely been used for detailed population analysis and individual animal feature extraction. We assessed the zoometric and feature extraction of the Arabian oryx (Oryx leucoryx) using data acquired from a captive population for comparison with reintroduced populations monitored by UAVs. Highly accurate scaled and geo-rectified imagery derived from UAV surveys allowed precise morphometric measurements of the oryx. The scaled top-view imagery combined with baseline data from known sex, age, weight and pregnancy status of captive individuals were used to develop predictive models. A bracketed index developed from the predictive models showed high accuracy for classifying the age group ≤16 months, animals with a weight >80 kg and pregnancy. The pregnancy classification decision tree model performed with 91.7% accuracy. The polynomial weight predictive model performed well with relatively high accuracy when using the total top-view surface measurement. Photogrammetrically processed UAV-acquired imagery can yield valuable zoometric data, feature extraction and modelling; it is a tool with a practical application for field biologists that can assist in the decision-making process for species conservation management.</description><subject>Accuracy</subject><subject>Aerial surveys</subject><subject>Age groups</subject><subject>Altitude</subject><subject>Animals</subject><subject>Cameras</subject><subject>Classification</subject><subject>Data acquisition</subject><subject>Decision making</subject><subject>Decision trees</subject><subject>Drone aircraft</subject><subject>Environmental monitoring</subject><subject>Feature extraction</subject><subject>Image acquisition</subject><subject>Non-Thematic Section</subject><subject>Oryx leucoryx</subject><subject>Performance prediction</subject><subject>Photogrammetry</subject><subject>Polynomials</subject><subject>Population studies</subject><subject>Prediction models</subject><subject>Pregnancy</subject><subject>Research Paper</subject><subject>Unmanned aerial vehicles</subject><subject>Weight</subject><subject>Wildlife conservation</subject><issn>0376-8929</issn><issn>1469-4387</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UMtKw0AUHUTBWv0AdwNudBGdV2ZSd6X4gmIX6sZNmMedmtJk6mQKzd-b0IILcXMvl_O4nIPQJSW3lFB190a4ksWETRglhDDBjtCICjnJBC_UMRoNcDbgp-isbVc9R-aqGKHXzxBqSLGy2OmkMexS1DZVocE-hhq7GBrAVa2XELt7nL4AT6M2lW5wiN0OXy-GuYatHc6bc3Ti9bqFi8Meo4_Hh_fZczZfPL3MpvPMcqpSZiDnihmbk1wxBZpZ4w0IRbhXOSWeOKo9F3nBHGdMeO01cYZJS0FrJx0fo6u97yaG7y20qVyFbWz6lyWTfX4luJQ9i-5ZNoa2jeDLTeyjxK6kpBxqK__U1mv4QaNrEyu3hF_r_1U_e4hvKA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>de Kock, Meyer E</creator><creator>O’Donovan, Declan</creator><creator>Khafaga, Tamer</creator><creator>Hejcmanová, Pavla</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3045-0323</orcidid><orcidid>https://orcid.org/0000-0001-9547-4302</orcidid><orcidid>https://orcid.org/0000-0002-6324-7989</orcidid></search><sort><creationdate>20211201</creationdate><title>Zoometric data extraction from drone imagery: the Arabian oryx (Oryx leucoryx)</title><author>de Kock, Meyer E ; O’Donovan, Declan ; Khafaga, Tamer ; Hejcmanová, Pavla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-be5372bc505727ea2cbfbe4703f7510f0d1af34582d3224fafa0db26c1eaad6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Aerial surveys</topic><topic>Age groups</topic><topic>Altitude</topic><topic>Animals</topic><topic>Cameras</topic><topic>Classification</topic><topic>Data acquisition</topic><topic>Decision making</topic><topic>Decision trees</topic><topic>Drone aircraft</topic><topic>Environmental monitoring</topic><topic>Feature extraction</topic><topic>Image acquisition</topic><topic>Non-Thematic Section</topic><topic>Oryx leucoryx</topic><topic>Performance prediction</topic><topic>Photogrammetry</topic><topic>Polynomials</topic><topic>Population studies</topic><topic>Prediction models</topic><topic>Pregnancy</topic><topic>Research Paper</topic><topic>Unmanned aerial vehicles</topic><topic>Weight</topic><topic>Wildlife conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Kock, Meyer E</creatorcontrib><creatorcontrib>O’Donovan, Declan</creatorcontrib><creatorcontrib>Khafaga, Tamer</creatorcontrib><creatorcontrib>Hejcmanová, Pavla</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Environmental conservation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Kock, Meyer E</au><au>O’Donovan, Declan</au><au>Khafaga, Tamer</au><au>Hejcmanová, Pavla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zoometric data extraction from drone imagery: the Arabian oryx (Oryx leucoryx)</atitle><jtitle>Environmental conservation</jtitle><addtitle>Envir. Conserv</addtitle><date>2021-12-01</date><risdate>2021</risdate><volume>48</volume><issue>4</issue><spage>295</spage><epage>300</epage><pages>295-300</pages><issn>0376-8929</issn><eissn>1469-4387</eissn><abstract>Data extraction from unmanned aerial vehicle (UAV) imagery has proved effective in animal surveys and monitoring, but to date has scarcely been used for detailed population analysis and individual animal feature extraction. We assessed the zoometric and feature extraction of the Arabian oryx (Oryx leucoryx) using data acquired from a captive population for comparison with reintroduced populations monitored by UAVs. Highly accurate scaled and geo-rectified imagery derived from UAV surveys allowed precise morphometric measurements of the oryx. The scaled top-view imagery combined with baseline data from known sex, age, weight and pregnancy status of captive individuals were used to develop predictive models. A bracketed index developed from the predictive models showed high accuracy for classifying the age group ≤16 months, animals with a weight >80 kg and pregnancy. The pregnancy classification decision tree model performed with 91.7% accuracy. The polynomial weight predictive model performed well with relatively high accuracy when using the total top-view surface measurement. Photogrammetrically processed UAV-acquired imagery can yield valuable zoometric data, feature extraction and modelling; it is a tool with a practical application for field biologists that can assist in the decision-making process for species conservation management.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0376892921000242</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3045-0323</orcidid><orcidid>https://orcid.org/0000-0001-9547-4302</orcidid><orcidid>https://orcid.org/0000-0002-6324-7989</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0376-8929 |
ispartof | Environmental conservation, 2021-12, Vol.48 (4), p.295-300 |
issn | 0376-8929 1469-4387 |
language | eng |
recordid | cdi_proquest_journals_2600274366 |
source | Cambridge University Press Journals Complete |
subjects | Accuracy Aerial surveys Age groups Altitude Animals Cameras Classification Data acquisition Decision making Decision trees Drone aircraft Environmental monitoring Feature extraction Image acquisition Non-Thematic Section Oryx leucoryx Performance prediction Photogrammetry Polynomials Population studies Prediction models Pregnancy Research Paper Unmanned aerial vehicles Weight Wildlife conservation |
title | Zoometric data extraction from drone imagery: the Arabian oryx (Oryx leucoryx) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A44%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zoometric%20data%20extraction%20from%20drone%20imagery:%20the%20Arabian%20oryx%20(Oryx%20leucoryx)&rft.jtitle=Environmental%20conservation&rft.au=de%20Kock,%20Meyer%20E&rft.date=2021-12-01&rft.volume=48&rft.issue=4&rft.spage=295&rft.epage=300&rft.pages=295-300&rft.issn=0376-8929&rft.eissn=1469-4387&rft_id=info:doi/10.1017/S0376892921000242&rft_dat=%3Cproquest_cross%3E2600274366%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2600274366&rft_id=info:pmid/&rft_cupid=10_1017_S0376892921000242&rfr_iscdi=true |