Enabling Fairness-Aware and Privacy-Preserving for Quality Evaluation in Vehicular Crowdsensing: A Decentralized Approach

With the rapid development of vehicular crowdsensing, it becomes easier and more efficient for mobile devices to sense, compute, and measure various data. However, how to address the fair quality evaluation between the platform and participants while preserving the privacy of solutions is still a ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Security and communication networks 2021-11, Vol.2021, p.1-11
Hauptverfasser: Wang, Zhihong, Li, Yongbiao, Li, Dingcheng, Li, Ming, Zhang, Bincheng, Huang, Shishi, He, Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title Security and communication networks
container_volume 2021
creator Wang, Zhihong
Li, Yongbiao
Li, Dingcheng
Li, Ming
Zhang, Bincheng
Huang, Shishi
He, Wen
description With the rapid development of vehicular crowdsensing, it becomes easier and more efficient for mobile devices to sense, compute, and measure various data. However, how to address the fair quality evaluation between the platform and participants while preserving the privacy of solutions is still a challenge. In the work, we present a fairness-aware and privacy-preserving scheme for worker quality evaluation by leveraging the blockchain, trusted execution environment (TEE), and machine learning technologies. Specifically, we build our framework atop the decentralized blockchain which can resist a single point of failure/compromise. The smart contracts paradigm in blockchain enforces correct and automatic program execution for task processing. In addition, machine learning and TEE are utilized to evaluate the quality of data collected by the sensors in a privacy-preserving and fair way, eliminating human subject judgement of the sensing solutions. Finally, a prototype of the proposed scheme is implemented to verify the feasibility and efficiency with a benchmark dataset.
doi_str_mv 10.1155/2021/9678409
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2600076781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2600076781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-ac806d1f1ffe8ffda858e9d0a78968d8aa0aac1af2ebcf44138c4a2ae471c5533</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKdv_oCAj1qXtGmb-jbmpsLACepruUtuXEZNZ9Ju1F9vx8RHn-59-M458BFyydkt52k6ilnMR0WWS8GKIzLgRVJEjMfx8d_PxSk5C2HNWMZFLgakmzpYVtZ90BlY7zCEaLwDjxScpgtvt6C6aOExoN_uKVN7-tJCZZuOTrdQtdDY2lHr6DuurGor8HTi650O6EIfuKNjeo8KXeP70DdqOt5sfA1qdU5ODFQBL37vkLzNpq-Tx2j-_PA0Gc8jJVjSRKAkyzQ33BiUxmiQqcRCM8hlkUktARiA4mBiXCojBE-kEhADipyrNE2SIbk69PazXy2GplzXrXf9ZBlnjLG898V76uZAKV-H4NGUG28_wXclZ-VebrmXW_7K7fHrA76yTsPO_k__AGx8e4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2600076781</pqid></control><display><type>article</type><title>Enabling Fairness-Aware and Privacy-Preserving for Quality Evaluation in Vehicular Crowdsensing: A Decentralized Approach</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Wang, Zhihong ; Li, Yongbiao ; Li, Dingcheng ; Li, Ming ; Zhang, Bincheng ; Huang, Shishi ; He, Wen</creator><contributor>Zhang, Leo Y. ; Leo Y Zhang</contributor><creatorcontrib>Wang, Zhihong ; Li, Yongbiao ; Li, Dingcheng ; Li, Ming ; Zhang, Bincheng ; Huang, Shishi ; He, Wen ; Zhang, Leo Y. ; Leo Y Zhang</creatorcontrib><description>With the rapid development of vehicular crowdsensing, it becomes easier and more efficient for mobile devices to sense, compute, and measure various data. However, how to address the fair quality evaluation between the platform and participants while preserving the privacy of solutions is still a challenge. In the work, we present a fairness-aware and privacy-preserving scheme for worker quality evaluation by leveraging the blockchain, trusted execution environment (TEE), and machine learning technologies. Specifically, we build our framework atop the decentralized blockchain which can resist a single point of failure/compromise. The smart contracts paradigm in blockchain enforces correct and automatic program execution for task processing. In addition, machine learning and TEE are utilized to evaluate the quality of data collected by the sensors in a privacy-preserving and fair way, eliminating human subject judgement of the sensing solutions. Finally, a prototype of the proposed scheme is implemented to verify the feasibility and efficiency with a benchmark dataset.</description><identifier>ISSN: 1939-0114</identifier><identifier>EISSN: 1939-0122</identifier><identifier>DOI: 10.1155/2021/9678409</identifier><language>eng</language><publisher>London: Hindawi</publisher><subject>Accuracy ; Blockchain ; Cryptography ; Design ; Digital currencies ; Electronic devices ; Global positioning systems ; GPS ; Machine learning ; Mobile computing ; Privacy ; Quality assessment ; Workers</subject><ispartof>Security and communication networks, 2021-11, Vol.2021, p.1-11</ispartof><rights>Copyright © 2021 Zhihong Wang et al.</rights><rights>Copyright © 2021 Zhihong Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-ac806d1f1ffe8ffda858e9d0a78968d8aa0aac1af2ebcf44138c4a2ae471c5533</citedby><cites>FETCH-LOGICAL-c403t-ac806d1f1ffe8ffda858e9d0a78968d8aa0aac1af2ebcf44138c4a2ae471c5533</cites><orcidid>0000-0001-8637-3358 ; 0000-0003-0524-0604 ; 0000-0002-0874-5010 ; 0000-0002-4956-9316 ; 0000-0002-9871-556X ; 0000-0002-7569-6263 ; 0000-0003-3605-3676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Zhang, Leo Y.</contributor><contributor>Leo Y Zhang</contributor><creatorcontrib>Wang, Zhihong</creatorcontrib><creatorcontrib>Li, Yongbiao</creatorcontrib><creatorcontrib>Li, Dingcheng</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Zhang, Bincheng</creatorcontrib><creatorcontrib>Huang, Shishi</creatorcontrib><creatorcontrib>He, Wen</creatorcontrib><title>Enabling Fairness-Aware and Privacy-Preserving for Quality Evaluation in Vehicular Crowdsensing: A Decentralized Approach</title><title>Security and communication networks</title><description>With the rapid development of vehicular crowdsensing, it becomes easier and more efficient for mobile devices to sense, compute, and measure various data. However, how to address the fair quality evaluation between the platform and participants while preserving the privacy of solutions is still a challenge. In the work, we present a fairness-aware and privacy-preserving scheme for worker quality evaluation by leveraging the blockchain, trusted execution environment (TEE), and machine learning technologies. Specifically, we build our framework atop the decentralized blockchain which can resist a single point of failure/compromise. The smart contracts paradigm in blockchain enforces correct and automatic program execution for task processing. In addition, machine learning and TEE are utilized to evaluate the quality of data collected by the sensors in a privacy-preserving and fair way, eliminating human subject judgement of the sensing solutions. Finally, a prototype of the proposed scheme is implemented to verify the feasibility and efficiency with a benchmark dataset.</description><subject>Accuracy</subject><subject>Blockchain</subject><subject>Cryptography</subject><subject>Design</subject><subject>Digital currencies</subject><subject>Electronic devices</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Machine learning</subject><subject>Mobile computing</subject><subject>Privacy</subject><subject>Quality assessment</subject><subject>Workers</subject><issn>1939-0114</issn><issn>1939-0122</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kFFLwzAUhYMoOKdv_oCAj1qXtGmb-jbmpsLACepruUtuXEZNZ9Ju1F9vx8RHn-59-M458BFyydkt52k6ilnMR0WWS8GKIzLgRVJEjMfx8d_PxSk5C2HNWMZFLgakmzpYVtZ90BlY7zCEaLwDjxScpgtvt6C6aOExoN_uKVN7-tJCZZuOTrdQtdDY2lHr6DuurGor8HTi650O6EIfuKNjeo8KXeP70DdqOt5sfA1qdU5ODFQBL37vkLzNpq-Tx2j-_PA0Gc8jJVjSRKAkyzQ33BiUxmiQqcRCM8hlkUktARiA4mBiXCojBE-kEhADipyrNE2SIbk69PazXy2GplzXrXf9ZBlnjLG898V76uZAKV-H4NGUG28_wXclZ-VebrmXW_7K7fHrA76yTsPO_k__AGx8e4Q</recordid><startdate>20211112</startdate><enddate>20211112</enddate><creator>Wang, Zhihong</creator><creator>Li, Yongbiao</creator><creator>Li, Dingcheng</creator><creator>Li, Ming</creator><creator>Zhang, Bincheng</creator><creator>Huang, Shishi</creator><creator>He, Wen</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8637-3358</orcidid><orcidid>https://orcid.org/0000-0003-0524-0604</orcidid><orcidid>https://orcid.org/0000-0002-0874-5010</orcidid><orcidid>https://orcid.org/0000-0002-4956-9316</orcidid><orcidid>https://orcid.org/0000-0002-9871-556X</orcidid><orcidid>https://orcid.org/0000-0002-7569-6263</orcidid><orcidid>https://orcid.org/0000-0003-3605-3676</orcidid></search><sort><creationdate>20211112</creationdate><title>Enabling Fairness-Aware and Privacy-Preserving for Quality Evaluation in Vehicular Crowdsensing: A Decentralized Approach</title><author>Wang, Zhihong ; Li, Yongbiao ; Li, Dingcheng ; Li, Ming ; Zhang, Bincheng ; Huang, Shishi ; He, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-ac806d1f1ffe8ffda858e9d0a78968d8aa0aac1af2ebcf44138c4a2ae471c5533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Blockchain</topic><topic>Cryptography</topic><topic>Design</topic><topic>Digital currencies</topic><topic>Electronic devices</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Machine learning</topic><topic>Mobile computing</topic><topic>Privacy</topic><topic>Quality assessment</topic><topic>Workers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Zhihong</creatorcontrib><creatorcontrib>Li, Yongbiao</creatorcontrib><creatorcontrib>Li, Dingcheng</creatorcontrib><creatorcontrib>Li, Ming</creatorcontrib><creatorcontrib>Zhang, Bincheng</creatorcontrib><creatorcontrib>Huang, Shishi</creatorcontrib><creatorcontrib>He, Wen</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Security and communication networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Zhihong</au><au>Li, Yongbiao</au><au>Li, Dingcheng</au><au>Li, Ming</au><au>Zhang, Bincheng</au><au>Huang, Shishi</au><au>He, Wen</au><au>Zhang, Leo Y.</au><au>Leo Y Zhang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enabling Fairness-Aware and Privacy-Preserving for Quality Evaluation in Vehicular Crowdsensing: A Decentralized Approach</atitle><jtitle>Security and communication networks</jtitle><date>2021-11-12</date><risdate>2021</risdate><volume>2021</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1939-0114</issn><eissn>1939-0122</eissn><abstract>With the rapid development of vehicular crowdsensing, it becomes easier and more efficient for mobile devices to sense, compute, and measure various data. However, how to address the fair quality evaluation between the platform and participants while preserving the privacy of solutions is still a challenge. In the work, we present a fairness-aware and privacy-preserving scheme for worker quality evaluation by leveraging the blockchain, trusted execution environment (TEE), and machine learning technologies. Specifically, we build our framework atop the decentralized blockchain which can resist a single point of failure/compromise. The smart contracts paradigm in blockchain enforces correct and automatic program execution for task processing. In addition, machine learning and TEE are utilized to evaluate the quality of data collected by the sensors in a privacy-preserving and fair way, eliminating human subject judgement of the sensing solutions. Finally, a prototype of the proposed scheme is implemented to verify the feasibility and efficiency with a benchmark dataset.</abstract><cop>London</cop><pub>Hindawi</pub><doi>10.1155/2021/9678409</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8637-3358</orcidid><orcidid>https://orcid.org/0000-0003-0524-0604</orcidid><orcidid>https://orcid.org/0000-0002-0874-5010</orcidid><orcidid>https://orcid.org/0000-0002-4956-9316</orcidid><orcidid>https://orcid.org/0000-0002-9871-556X</orcidid><orcidid>https://orcid.org/0000-0002-7569-6263</orcidid><orcidid>https://orcid.org/0000-0003-3605-3676</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-0114
ispartof Security and communication networks, 2021-11, Vol.2021, p.1-11
issn 1939-0114
1939-0122
language eng
recordid cdi_proquest_journals_2600076781
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Accuracy
Blockchain
Cryptography
Design
Digital currencies
Electronic devices
Global positioning systems
GPS
Machine learning
Mobile computing
Privacy
Quality assessment
Workers
title Enabling Fairness-Aware and Privacy-Preserving for Quality Evaluation in Vehicular Crowdsensing: A Decentralized Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A24%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enabling%20Fairness-Aware%20and%20Privacy-Preserving%20for%20Quality%20Evaluation%20in%20Vehicular%20Crowdsensing:%20A%20Decentralized%20Approach&rft.jtitle=Security%20and%20communication%20networks&rft.au=Wang,%20Zhihong&rft.date=2021-11-12&rft.volume=2021&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1939-0114&rft.eissn=1939-0122&rft_id=info:doi/10.1155/2021/9678409&rft_dat=%3Cproquest_cross%3E2600076781%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2600076781&rft_id=info:pmid/&rfr_iscdi=true