Effect of tempering temperature on monotonic and low-cycle fatigue properties of a new low-carbon martensitic steel

The relationship between tempering temperature and low cycle fatigue (LCF) is not clear. New low-carbon martensitic steels under different tempering temperatures (320 °C, 350 °C, 380 °C) are tested for tensile mechanical properties, LCF, and microstructure. The results show that the monotone mechani...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2021-10, Vol.826, p.141939, Article 141939
Hauptverfasser: Yang, G., Xia, S.L., Zhang, F.C., Branco, R., Long, X.Y., Li, Y.G., Li, J.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 141939
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 826
creator Yang, G.
Xia, S.L.
Zhang, F.C.
Branco, R.
Long, X.Y.
Li, Y.G.
Li, J.H.
description The relationship between tempering temperature and low cycle fatigue (LCF) is not clear. New low-carbon martensitic steels under different tempering temperatures (320 °C, 350 °C, 380 °C) are tested for tensile mechanical properties, LCF, and microstructure. The results show that the monotone mechanical properties of martensite steels decrease with the increase of tempering temperature. The microstructure shows that the width of the laths increases, the residual austenite is decomposed, and the dislocation density decreases. A damage hysteresis fatigue life prediction model considering tempering temperature is proposed and the fatigue performance is evaluated. The fatigue performance parameters show that the fatigue damage capacity (W0) decreases and the damage transition index (β) increased. The established fatigue life model can predict the fatigue life at different tempering temperatures.
doi_str_mv 10.1016/j.msea.2021.141939
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599940816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509321012053</els_id><sourcerecordid>2599940816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-852cfe6eafcbe9fc96a53ec5f044260417dd886fc52dffc20a0f6e89e1c5441d3</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoOKf_gKeA59YkTbsGvMjwFwy86Dlk6ZeR0iUzSR37703pzp7yHd7nzcuD0D0lJSW0eezLfQRVMsJoSTkVlbhAC9quqoKLqrlECyIYLWoiqmt0E2NPCKGc1AsUX4wBnbA3OMH-AMG63flSaQyAvcN773zyzmqsXIcHfyz0SQ-AjUp2NwI-BJ_jyUKcahR2cJxTKmwnXIUELtqUC2ICGG7RlVFDhLvzu0Tfry9f6_di8_n2sX7eFLpibSrammkDDSijtyCMFo2qK9C1IZyzhnC66rq2bYyuWWeMZkQR00ArgOqac9pVS_Qw9-aBPyPEJHs_Bpe_lKwWQnDS0ian2JzSwccYwMhDsHnzSVIiJ7myl5NcOcmVs9wMPc0Q5P2_FoKM2oLT0NmQdcrO2__wPxxahWI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599940816</pqid></control><display><type>article</type><title>Effect of tempering temperature on monotonic and low-cycle fatigue properties of a new low-carbon martensitic steel</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yang, G. ; Xia, S.L. ; Zhang, F.C. ; Branco, R. ; Long, X.Y. ; Li, Y.G. ; Li, J.H.</creator><creatorcontrib>Yang, G. ; Xia, S.L. ; Zhang, F.C. ; Branco, R. ; Long, X.Y. ; Li, Y.G. ; Li, J.H.</creatorcontrib><description>The relationship between tempering temperature and low cycle fatigue (LCF) is not clear. New low-carbon martensitic steels under different tempering temperatures (320 °C, 350 °C, 380 °C) are tested for tensile mechanical properties, LCF, and microstructure. The results show that the monotone mechanical properties of martensite steels decrease with the increase of tempering temperature. The microstructure shows that the width of the laths increases, the residual austenite is decomposed, and the dislocation density decreases. A damage hysteresis fatigue life prediction model considering tempering temperature is proposed and the fatigue performance is evaluated. The fatigue performance parameters show that the fatigue damage capacity (W0) decreases and the damage transition index (β) increased. The established fatigue life model can predict the fatigue life at different tempering temperatures.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2021.141939</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Damage ; Dislocation density ; Fatigue failure ; Fatigue life ; Heat treating ; Life prediction ; Life prediction model ; Low carbon steels ; Low cycle fatigue ; Low-carbon martensitic steel ; Martensitic stainless steels ; Mechanical properties ; Microstructure ; Performance evaluation ; Plastic strain energy ; Prediction models ; Retained austenite ; Temperature ; Tempering ; Tempering temperature</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2021-10, Vol.826, p.141939, Article 141939</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 5, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-852cfe6eafcbe9fc96a53ec5f044260417dd886fc52dffc20a0f6e89e1c5441d3</citedby><cites>FETCH-LOGICAL-c328t-852cfe6eafcbe9fc96a53ec5f044260417dd886fc52dffc20a0f6e89e1c5441d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2021.141939$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Yang, G.</creatorcontrib><creatorcontrib>Xia, S.L.</creatorcontrib><creatorcontrib>Zhang, F.C.</creatorcontrib><creatorcontrib>Branco, R.</creatorcontrib><creatorcontrib>Long, X.Y.</creatorcontrib><creatorcontrib>Li, Y.G.</creatorcontrib><creatorcontrib>Li, J.H.</creatorcontrib><title>Effect of tempering temperature on monotonic and low-cycle fatigue properties of a new low-carbon martensitic steel</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The relationship between tempering temperature and low cycle fatigue (LCF) is not clear. New low-carbon martensitic steels under different tempering temperatures (320 °C, 350 °C, 380 °C) are tested for tensile mechanical properties, LCF, and microstructure. The results show that the monotone mechanical properties of martensite steels decrease with the increase of tempering temperature. The microstructure shows that the width of the laths increases, the residual austenite is decomposed, and the dislocation density decreases. A damage hysteresis fatigue life prediction model considering tempering temperature is proposed and the fatigue performance is evaluated. The fatigue performance parameters show that the fatigue damage capacity (W0) decreases and the damage transition index (β) increased. The established fatigue life model can predict the fatigue life at different tempering temperatures.</description><subject>Damage</subject><subject>Dislocation density</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Heat treating</subject><subject>Life prediction</subject><subject>Life prediction model</subject><subject>Low carbon steels</subject><subject>Low cycle fatigue</subject><subject>Low-carbon martensitic steel</subject><subject>Martensitic stainless steels</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Performance evaluation</subject><subject>Plastic strain energy</subject><subject>Prediction models</subject><subject>Retained austenite</subject><subject>Temperature</subject><subject>Tempering</subject><subject>Tempering temperature</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAYhoMoOKf_gKeA59YkTbsGvMjwFwy86Dlk6ZeR0iUzSR37703pzp7yHd7nzcuD0D0lJSW0eezLfQRVMsJoSTkVlbhAC9quqoKLqrlECyIYLWoiqmt0E2NPCKGc1AsUX4wBnbA3OMH-AMG63flSaQyAvcN773zyzmqsXIcHfyz0SQ-AjUp2NwI-BJ_jyUKcahR2cJxTKmwnXIUELtqUC2ICGG7RlVFDhLvzu0Tfry9f6_di8_n2sX7eFLpibSrammkDDSijtyCMFo2qK9C1IZyzhnC66rq2bYyuWWeMZkQR00ArgOqac9pVS_Qw9-aBPyPEJHs_Bpe_lKwWQnDS0ian2JzSwccYwMhDsHnzSVIiJ7myl5NcOcmVs9wMPc0Q5P2_FoKM2oLT0NmQdcrO2__wPxxahWI</recordid><startdate>20211005</startdate><enddate>20211005</enddate><creator>Yang, G.</creator><creator>Xia, S.L.</creator><creator>Zhang, F.C.</creator><creator>Branco, R.</creator><creator>Long, X.Y.</creator><creator>Li, Y.G.</creator><creator>Li, J.H.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20211005</creationdate><title>Effect of tempering temperature on monotonic and low-cycle fatigue properties of a new low-carbon martensitic steel</title><author>Yang, G. ; Xia, S.L. ; Zhang, F.C. ; Branco, R. ; Long, X.Y. ; Li, Y.G. ; Li, J.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-852cfe6eafcbe9fc96a53ec5f044260417dd886fc52dffc20a0f6e89e1c5441d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Damage</topic><topic>Dislocation density</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Heat treating</topic><topic>Life prediction</topic><topic>Life prediction model</topic><topic>Low carbon steels</topic><topic>Low cycle fatigue</topic><topic>Low-carbon martensitic steel</topic><topic>Martensitic stainless steels</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Performance evaluation</topic><topic>Plastic strain energy</topic><topic>Prediction models</topic><topic>Retained austenite</topic><topic>Temperature</topic><topic>Tempering</topic><topic>Tempering temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, G.</creatorcontrib><creatorcontrib>Xia, S.L.</creatorcontrib><creatorcontrib>Zhang, F.C.</creatorcontrib><creatorcontrib>Branco, R.</creatorcontrib><creatorcontrib>Long, X.Y.</creatorcontrib><creatorcontrib>Li, Y.G.</creatorcontrib><creatorcontrib>Li, J.H.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, G.</au><au>Xia, S.L.</au><au>Zhang, F.C.</au><au>Branco, R.</au><au>Long, X.Y.</au><au>Li, Y.G.</au><au>Li, J.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of tempering temperature on monotonic and low-cycle fatigue properties of a new low-carbon martensitic steel</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2021-10-05</date><risdate>2021</risdate><volume>826</volume><spage>141939</spage><pages>141939-</pages><artnum>141939</artnum><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The relationship between tempering temperature and low cycle fatigue (LCF) is not clear. New low-carbon martensitic steels under different tempering temperatures (320 °C, 350 °C, 380 °C) are tested for tensile mechanical properties, LCF, and microstructure. The results show that the monotone mechanical properties of martensite steels decrease with the increase of tempering temperature. The microstructure shows that the width of the laths increases, the residual austenite is decomposed, and the dislocation density decreases. A damage hysteresis fatigue life prediction model considering tempering temperature is proposed and the fatigue performance is evaluated. The fatigue performance parameters show that the fatigue damage capacity (W0) decreases and the damage transition index (β) increased. The established fatigue life model can predict the fatigue life at different tempering temperatures.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2021.141939</doi></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2021-10, Vol.826, p.141939, Article 141939
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_journals_2599940816
source ScienceDirect Journals (5 years ago - present)
subjects Damage
Dislocation density
Fatigue failure
Fatigue life
Heat treating
Life prediction
Life prediction model
Low carbon steels
Low cycle fatigue
Low-carbon martensitic steel
Martensitic stainless steels
Mechanical properties
Microstructure
Performance evaluation
Plastic strain energy
Prediction models
Retained austenite
Temperature
Tempering
Tempering temperature
title Effect of tempering temperature on monotonic and low-cycle fatigue properties of a new low-carbon martensitic steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20tempering%20temperature%20on%20monotonic%20and%20low-cycle%20fatigue%20properties%20of%20a%20new%20low-carbon%20martensitic%20steel&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Yang,%20G.&rft.date=2021-10-05&rft.volume=826&rft.spage=141939&rft.pages=141939-&rft.artnum=141939&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2021.141939&rft_dat=%3Cproquest_cross%3E2599940816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599940816&rft_id=info:pmid/&rft_els_id=S0921509321012053&rfr_iscdi=true