A phase field model for hydrogen-assisted fatigue

We present a new theoretical and numerical phase field-based formulation for predicting hydrogen-assisted fatigue. The coupled deformation-diffusion-damage model presented enables predicting fatigue crack nucleation and growth for arbitrary loading patterns and specimen geometries. The role of hydro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fatigue 2022-01, Vol.154, p.106521, Article 106521
Hauptverfasser: Golahmar, Alireza, Kristensen, Philip K., Niordson, Christian F., Martínez-Pañeda, Emilio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 106521
container_title International journal of fatigue
container_volume 154
creator Golahmar, Alireza
Kristensen, Philip K.
Niordson, Christian F.
Martínez-Pañeda, Emilio
description We present a new theoretical and numerical phase field-based formulation for predicting hydrogen-assisted fatigue. The coupled deformation-diffusion-damage model presented enables predicting fatigue crack nucleation and growth for arbitrary loading patterns and specimen geometries. The role of hydrogen in increasing fatigue crack growth rates and decreasing the number of cycles to failure is investigated. Our numerical experiments enable mapping the three loading frequency regimes and naturally recover Paris law behaviour for various hydrogen concentrations. In addition, Virtual S–N curves are obtained for both notched and smooth samples, exhibiting a good agreement with experiments. •A phase field formulation for hydrogen-assisted fatigue is presented.•Fatigue crack nucleation and growth is predicted for arbitrary loading patterns, geometries, and environments.•Paris’ law behaviour, and the role of hydrogen on it, is naturally recovered.•The influence of the loading frequency is quantified and the resulting regimes mapped.•Virtual S–N curves are obtained, showing a good agreement with experiments.
doi_str_mv 10.1016/j.ijfatigue.2021.106521
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599940590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112321003765</els_id><sourcerecordid>2599940590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3071-9be93c64e91c2d24859a05f899167b0a4902aa210755a1b50494c9a2123c87b63</originalsourceid><addsrcrecordid>eNqFkEFLw0AQhRdRsFZ_gwHPqTOb3SRzLEWtUPCi52WzmbQb2qbupkL_vSkpXj0NPN68N_MJ8YgwQ8D8uZ35trG9Xx95JkHioOZa4pWYYFlQmiktr8UEUMkUUWa34i7GFgAICj0ROE8OGxs5aTxv62TX1bxNmi4km1MdujXvUxujjz3XyaXkXtw0dhv54TKn4uv15XOxTFcfb--L-Sp1GRSYUsWUuVwxoZO1VKUmC7opiTAvKrCKQForcbhCW6w0KFKOBkFmriyqPJuKpzH3ELrvI8fetN0x7IdKIzURKdAEg6sYXS50MQZuzCH4nQ0ng2DOfExr_viYMx8z8hk25-MmD0_8eA4mOs97x7UP7HpTd_7fjF-qIG-9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599940590</pqid></control><display><type>article</type><title>A phase field model for hydrogen-assisted fatigue</title><source>Access via ScienceDirect (Elsevier)</source><creator>Golahmar, Alireza ; Kristensen, Philip K. ; Niordson, Christian F. ; Martínez-Pañeda, Emilio</creator><creatorcontrib>Golahmar, Alireza ; Kristensen, Philip K. ; Niordson, Christian F. ; Martínez-Pañeda, Emilio</creatorcontrib><description>We present a new theoretical and numerical phase field-based formulation for predicting hydrogen-assisted fatigue. The coupled deformation-diffusion-damage model presented enables predicting fatigue crack nucleation and growth for arbitrary loading patterns and specimen geometries. The role of hydrogen in increasing fatigue crack growth rates and decreasing the number of cycles to failure is investigated. Our numerical experiments enable mapping the three loading frequency regimes and naturally recover Paris law behaviour for various hydrogen concentrations. In addition, Virtual S–N curves are obtained for both notched and smooth samples, exhibiting a good agreement with experiments. •A phase field formulation for hydrogen-assisted fatigue is presented.•Fatigue crack nucleation and growth is predicted for arbitrary loading patterns, geometries, and environments.•Paris’ law behaviour, and the role of hydrogen on it, is naturally recovered.•The influence of the loading frequency is quantified and the resulting regimes mapped.•Virtual S–N curves are obtained, showing a good agreement with experiments.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2021.106521</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Crack growth ; Crack initiation ; Crack propagation ; Damage assessment ; Fatigue ; Fatigue failure ; Finite element method ; Fracture mechanics ; Hydrogen ; Hydrogen embrittlement ; Materials fatigue ; Mathematical models ; Nucleation ; Phase field</subject><ispartof>International journal of fatigue, 2022-01, Vol.154, p.106521, Article 106521</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jan 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3071-9be93c64e91c2d24859a05f899167b0a4902aa210755a1b50494c9a2123c87b63</citedby><cites>FETCH-LOGICAL-c3071-9be93c64e91c2d24859a05f899167b0a4902aa210755a1b50494c9a2123c87b63</cites><orcidid>0000-0002-1562-097X ; 0000-0001-6779-8924 ; 0000-0002-7047-0687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijfatigue.2021.106521$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Golahmar, Alireza</creatorcontrib><creatorcontrib>Kristensen, Philip K.</creatorcontrib><creatorcontrib>Niordson, Christian F.</creatorcontrib><creatorcontrib>Martínez-Pañeda, Emilio</creatorcontrib><title>A phase field model for hydrogen-assisted fatigue</title><title>International journal of fatigue</title><description>We present a new theoretical and numerical phase field-based formulation for predicting hydrogen-assisted fatigue. The coupled deformation-diffusion-damage model presented enables predicting fatigue crack nucleation and growth for arbitrary loading patterns and specimen geometries. The role of hydrogen in increasing fatigue crack growth rates and decreasing the number of cycles to failure is investigated. Our numerical experiments enable mapping the three loading frequency regimes and naturally recover Paris law behaviour for various hydrogen concentrations. In addition, Virtual S–N curves are obtained for both notched and smooth samples, exhibiting a good agreement with experiments. •A phase field formulation for hydrogen-assisted fatigue is presented.•Fatigue crack nucleation and growth is predicted for arbitrary loading patterns, geometries, and environments.•Paris’ law behaviour, and the role of hydrogen on it, is naturally recovered.•The influence of the loading frequency is quantified and the resulting regimes mapped.•Virtual S–N curves are obtained, showing a good agreement with experiments.</description><subject>Crack growth</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Damage assessment</subject><subject>Fatigue</subject><subject>Fatigue failure</subject><subject>Finite element method</subject><subject>Fracture mechanics</subject><subject>Hydrogen</subject><subject>Hydrogen embrittlement</subject><subject>Materials fatigue</subject><subject>Mathematical models</subject><subject>Nucleation</subject><subject>Phase field</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLw0AQhRdRsFZ_gwHPqTOb3SRzLEWtUPCi52WzmbQb2qbupkL_vSkpXj0NPN68N_MJ8YgwQ8D8uZ35trG9Xx95JkHioOZa4pWYYFlQmiktr8UEUMkUUWa34i7GFgAICj0ROE8OGxs5aTxv62TX1bxNmi4km1MdujXvUxujjz3XyaXkXtw0dhv54TKn4uv15XOxTFcfb--L-Sp1GRSYUsWUuVwxoZO1VKUmC7opiTAvKrCKQForcbhCW6w0KFKOBkFmriyqPJuKpzH3ELrvI8fetN0x7IdKIzURKdAEg6sYXS50MQZuzCH4nQ0ng2DOfExr_viYMx8z8hk25-MmD0_8eA4mOs97x7UP7HpTd_7fjF-qIG-9</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Golahmar, Alireza</creator><creator>Kristensen, Philip K.</creator><creator>Niordson, Christian F.</creator><creator>Martínez-Pañeda, Emilio</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1562-097X</orcidid><orcidid>https://orcid.org/0000-0001-6779-8924</orcidid><orcidid>https://orcid.org/0000-0002-7047-0687</orcidid></search><sort><creationdate>202201</creationdate><title>A phase field model for hydrogen-assisted fatigue</title><author>Golahmar, Alireza ; Kristensen, Philip K. ; Niordson, Christian F. ; Martínez-Pañeda, Emilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3071-9be93c64e91c2d24859a05f899167b0a4902aa210755a1b50494c9a2123c87b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Crack growth</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Damage assessment</topic><topic>Fatigue</topic><topic>Fatigue failure</topic><topic>Finite element method</topic><topic>Fracture mechanics</topic><topic>Hydrogen</topic><topic>Hydrogen embrittlement</topic><topic>Materials fatigue</topic><topic>Mathematical models</topic><topic>Nucleation</topic><topic>Phase field</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Golahmar, Alireza</creatorcontrib><creatorcontrib>Kristensen, Philip K.</creatorcontrib><creatorcontrib>Niordson, Christian F.</creatorcontrib><creatorcontrib>Martínez-Pañeda, Emilio</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Golahmar, Alireza</au><au>Kristensen, Philip K.</au><au>Niordson, Christian F.</au><au>Martínez-Pañeda, Emilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A phase field model for hydrogen-assisted fatigue</atitle><jtitle>International journal of fatigue</jtitle><date>2022-01</date><risdate>2022</risdate><volume>154</volume><spage>106521</spage><pages>106521-</pages><artnum>106521</artnum><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>We present a new theoretical and numerical phase field-based formulation for predicting hydrogen-assisted fatigue. The coupled deformation-diffusion-damage model presented enables predicting fatigue crack nucleation and growth for arbitrary loading patterns and specimen geometries. The role of hydrogen in increasing fatigue crack growth rates and decreasing the number of cycles to failure is investigated. Our numerical experiments enable mapping the three loading frequency regimes and naturally recover Paris law behaviour for various hydrogen concentrations. In addition, Virtual S–N curves are obtained for both notched and smooth samples, exhibiting a good agreement with experiments. •A phase field formulation for hydrogen-assisted fatigue is presented.•Fatigue crack nucleation and growth is predicted for arbitrary loading patterns, geometries, and environments.•Paris’ law behaviour, and the role of hydrogen on it, is naturally recovered.•The influence of the loading frequency is quantified and the resulting regimes mapped.•Virtual S–N curves are obtained, showing a good agreement with experiments.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2021.106521</doi><orcidid>https://orcid.org/0000-0002-1562-097X</orcidid><orcidid>https://orcid.org/0000-0001-6779-8924</orcidid><orcidid>https://orcid.org/0000-0002-7047-0687</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2022-01, Vol.154, p.106521, Article 106521
issn 0142-1123
1879-3452
language eng
recordid cdi_proquest_journals_2599940590
source Access via ScienceDirect (Elsevier)
subjects Crack growth
Crack initiation
Crack propagation
Damage assessment
Fatigue
Fatigue failure
Finite element method
Fracture mechanics
Hydrogen
Hydrogen embrittlement
Materials fatigue
Mathematical models
Nucleation
Phase field
title A phase field model for hydrogen-assisted fatigue
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T13%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20phase%20field%20model%20for%20hydrogen-assisted%20fatigue&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Golahmar,%20Alireza&rft.date=2022-01&rft.volume=154&rft.spage=106521&rft.pages=106521-&rft.artnum=106521&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2021.106521&rft_dat=%3Cproquest_cross%3E2599940590%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599940590&rft_id=info:pmid/&rft_els_id=S0142112321003765&rfr_iscdi=true