Calibrated and recalibrated expected improvements for Bayesian optimization

Expected improvement (EI), a function of prediction uncertainty σ ( x ) and improvement quantity ( ξ - y ^ ( x ) ) , has been widely used to guide the Bayesian optimization (BO). However, the EI-based BO can get stuck in sub-optimal solutions even with a large number of samples. The previous studies...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural and multidisciplinary optimization 2021-12, Vol.64 (6), p.3549-3567
Hauptverfasser: Guo, Zhendong, Ong, Yew-Soon, Liu, Haitao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3567
container_issue 6
container_start_page 3549
container_title Structural and multidisciplinary optimization
container_volume 64
creator Guo, Zhendong
Ong, Yew-Soon
Liu, Haitao
description Expected improvement (EI), a function of prediction uncertainty σ ( x ) and improvement quantity ( ξ - y ^ ( x ) ) , has been widely used to guide the Bayesian optimization (BO). However, the EI-based BO can get stuck in sub-optimal solutions even with a large number of samples. The previous studies attribute such sub-optimal convergence problem to the “over-exploitation” of EI. Differently, we argue that, in addition to the “over-exploitation”, EI can also get trapped in querying samples with maximum σ ( x ) but poor objective function value y ( x ) . We call such issue as “over-exploration”, which can be a more challenging problem that leads to the sub-optimal convergence rate of BO. To address the issues of “over-exploration” and “over-exploitation” simultaneously, we propose to calibrate the incumbent ξ adaptively instead of fixing it as the present best solution in the EI formulation. Furthermore, we propose two calibrated versions of EI, namely calibrated EI (CEI) and recalibrated EI (REI), which combine the calibrated incumbent ξ Calibrated  with distance constraint to enhance the local exploitation and global exploration of promising areas, respectively. After that, we integrate EI with CEI & REI to devise a novel BO algorithm named as CR-EI. Through tests on seven benchmark functions and an engineering problem of airfoil optimization, the effectiveness of CR-EI has been well demonstrated.
doi_str_mv 10.1007/s00158-021-03038-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599732631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599732631</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-997f551931ca14d588f1f38f15b5c89c6f39970d53d4d2d086abda79068f13b43</originalsourceid><addsrcrecordid>eNp9kElLBDEQhYMoOC5_wFOD59aqTqc7OerghgNeFLyFdBbJML2Y9Ijjrzdji3PzUlUU33tVPELOEC4QoL6MAMh4DgXmQIHynO6RGVbIciw53_-b69dDchTjEgA4lGJGHudq5ZugRmsy1ZksWL1b2M_B6u3g2yH0H7a13Rgz14fsWm1s9KrL-mH0rf9So--7E3Lg1Cra099-TF5ub57n9_ni6e5hfrXINUUx5kLUjjEUFLXC0jDOHTqaCmuY5kJXjiYEDKOmNIUBXqnGqFpAlRjalPSYnE--6an3tY2jXPbr0KWTsmBJSouKYqKKidKhjzFYJ4fgWxU2EkFuQ5NTaDKFJn9CkzSJ6CSKCe7ebNhZ_6P6BhVLb3k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599732631</pqid></control><display><type>article</type><title>Calibrated and recalibrated expected improvements for Bayesian optimization</title><source>Springer Nature - Complete Springer Journals</source><creator>Guo, Zhendong ; Ong, Yew-Soon ; Liu, Haitao</creator><creatorcontrib>Guo, Zhendong ; Ong, Yew-Soon ; Liu, Haitao</creatorcontrib><description>Expected improvement (EI), a function of prediction uncertainty σ ( x ) and improvement quantity ( ξ - y ^ ( x ) ) , has been widely used to guide the Bayesian optimization (BO). However, the EI-based BO can get stuck in sub-optimal solutions even with a large number of samples. The previous studies attribute such sub-optimal convergence problem to the “over-exploitation” of EI. Differently, we argue that, in addition to the “over-exploitation”, EI can also get trapped in querying samples with maximum σ ( x ) but poor objective function value y ( x ) . We call such issue as “over-exploration”, which can be a more challenging problem that leads to the sub-optimal convergence rate of BO. To address the issues of “over-exploration” and “over-exploitation” simultaneously, we propose to calibrate the incumbent ξ adaptively instead of fixing it as the present best solution in the EI formulation. Furthermore, we propose two calibrated versions of EI, namely calibrated EI (CEI) and recalibrated EI (REI), which combine the calibrated incumbent ξ Calibrated  with distance constraint to enhance the local exploitation and global exploration of promising areas, respectively. After that, we integrate EI with CEI &amp; REI to devise a novel BO algorithm named as CR-EI. Through tests on seven benchmark functions and an engineering problem of airfoil optimization, the effectiveness of CR-EI has been well demonstrated.</description><identifier>ISSN: 1615-147X</identifier><identifier>EISSN: 1615-1488</identifier><identifier>DOI: 10.1007/s00158-021-03038-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Bayesian analysis ; Calibration ; Computational Mathematics and Numerical Analysis ; Convergence ; Engineering ; Engineering Design ; Exploitation ; Exploration ; Optimization ; Research Paper ; Theoretical and Applied Mechanics</subject><ispartof>Structural and multidisciplinary optimization, 2021-12, Vol.64 (6), p.3549-3567</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-997f551931ca14d588f1f38f15b5c89c6f39970d53d4d2d086abda79068f13b43</citedby><cites>FETCH-LOGICAL-c319t-997f551931ca14d588f1f38f15b5c89c6f39970d53d4d2d086abda79068f13b43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00158-021-03038-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00158-021-03038-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Guo, Zhendong</creatorcontrib><creatorcontrib>Ong, Yew-Soon</creatorcontrib><creatorcontrib>Liu, Haitao</creatorcontrib><title>Calibrated and recalibrated expected improvements for Bayesian optimization</title><title>Structural and multidisciplinary optimization</title><addtitle>Struct Multidisc Optim</addtitle><description>Expected improvement (EI), a function of prediction uncertainty σ ( x ) and improvement quantity ( ξ - y ^ ( x ) ) , has been widely used to guide the Bayesian optimization (BO). However, the EI-based BO can get stuck in sub-optimal solutions even with a large number of samples. The previous studies attribute such sub-optimal convergence problem to the “over-exploitation” of EI. Differently, we argue that, in addition to the “over-exploitation”, EI can also get trapped in querying samples with maximum σ ( x ) but poor objective function value y ( x ) . We call such issue as “over-exploration”, which can be a more challenging problem that leads to the sub-optimal convergence rate of BO. To address the issues of “over-exploration” and “over-exploitation” simultaneously, we propose to calibrate the incumbent ξ adaptively instead of fixing it as the present best solution in the EI formulation. Furthermore, we propose two calibrated versions of EI, namely calibrated EI (CEI) and recalibrated EI (REI), which combine the calibrated incumbent ξ Calibrated  with distance constraint to enhance the local exploitation and global exploration of promising areas, respectively. After that, we integrate EI with CEI &amp; REI to devise a novel BO algorithm named as CR-EI. Through tests on seven benchmark functions and an engineering problem of airfoil optimization, the effectiveness of CR-EI has been well demonstrated.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Calibration</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convergence</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Exploitation</subject><subject>Exploration</subject><subject>Optimization</subject><subject>Research Paper</subject><subject>Theoretical and Applied Mechanics</subject><issn>1615-147X</issn><issn>1615-1488</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kElLBDEQhYMoOC5_wFOD59aqTqc7OerghgNeFLyFdBbJML2Y9Ijjrzdji3PzUlUU33tVPELOEC4QoL6MAMh4DgXmQIHynO6RGVbIciw53_-b69dDchTjEgA4lGJGHudq5ZugRmsy1ZksWL1b2M_B6u3g2yH0H7a13Rgz14fsWm1s9KrL-mH0rf9So--7E3Lg1Cra099-TF5ub57n9_ni6e5hfrXINUUx5kLUjjEUFLXC0jDOHTqaCmuY5kJXjiYEDKOmNIUBXqnGqFpAlRjalPSYnE--6an3tY2jXPbr0KWTsmBJSouKYqKKidKhjzFYJ4fgWxU2EkFuQ5NTaDKFJn9CkzSJ6CSKCe7ebNhZ_6P6BhVLb3k</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Guo, Zhendong</creator><creator>Ong, Yew-Soon</creator><creator>Liu, Haitao</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20211201</creationdate><title>Calibrated and recalibrated expected improvements for Bayesian optimization</title><author>Guo, Zhendong ; Ong, Yew-Soon ; Liu, Haitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-997f551931ca14d588f1f38f15b5c89c6f39970d53d4d2d086abda79068f13b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Calibration</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convergence</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Exploitation</topic><topic>Exploration</topic><topic>Optimization</topic><topic>Research Paper</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Zhendong</creatorcontrib><creatorcontrib>Ong, Yew-Soon</creatorcontrib><creatorcontrib>Liu, Haitao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Structural and multidisciplinary optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Zhendong</au><au>Ong, Yew-Soon</au><au>Liu, Haitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calibrated and recalibrated expected improvements for Bayesian optimization</atitle><jtitle>Structural and multidisciplinary optimization</jtitle><stitle>Struct Multidisc Optim</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>64</volume><issue>6</issue><spage>3549</spage><epage>3567</epage><pages>3549-3567</pages><issn>1615-147X</issn><eissn>1615-1488</eissn><abstract>Expected improvement (EI), a function of prediction uncertainty σ ( x ) and improvement quantity ( ξ - y ^ ( x ) ) , has been widely used to guide the Bayesian optimization (BO). However, the EI-based BO can get stuck in sub-optimal solutions even with a large number of samples. The previous studies attribute such sub-optimal convergence problem to the “over-exploitation” of EI. Differently, we argue that, in addition to the “over-exploitation”, EI can also get trapped in querying samples with maximum σ ( x ) but poor objective function value y ( x ) . We call such issue as “over-exploration”, which can be a more challenging problem that leads to the sub-optimal convergence rate of BO. To address the issues of “over-exploration” and “over-exploitation” simultaneously, we propose to calibrate the incumbent ξ adaptively instead of fixing it as the present best solution in the EI formulation. Furthermore, we propose two calibrated versions of EI, namely calibrated EI (CEI) and recalibrated EI (REI), which combine the calibrated incumbent ξ Calibrated  with distance constraint to enhance the local exploitation and global exploration of promising areas, respectively. After that, we integrate EI with CEI &amp; REI to devise a novel BO algorithm named as CR-EI. Through tests on seven benchmark functions and an engineering problem of airfoil optimization, the effectiveness of CR-EI has been well demonstrated.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00158-021-03038-3</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-147X
ispartof Structural and multidisciplinary optimization, 2021-12, Vol.64 (6), p.3549-3567
issn 1615-147X
1615-1488
language eng
recordid cdi_proquest_journals_2599732631
source Springer Nature - Complete Springer Journals
subjects Algorithms
Bayesian analysis
Calibration
Computational Mathematics and Numerical Analysis
Convergence
Engineering
Engineering Design
Exploitation
Exploration
Optimization
Research Paper
Theoretical and Applied Mechanics
title Calibrated and recalibrated expected improvements for Bayesian optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A21%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calibrated%20and%20recalibrated%20expected%20improvements%20for%20Bayesian%20optimization&rft.jtitle=Structural%20and%20multidisciplinary%20optimization&rft.au=Guo,%20Zhendong&rft.date=2021-12-01&rft.volume=64&rft.issue=6&rft.spage=3549&rft.epage=3567&rft.pages=3549-3567&rft.issn=1615-147X&rft.eissn=1615-1488&rft_id=info:doi/10.1007/s00158-021-03038-3&rft_dat=%3Cproquest_cross%3E2599732631%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599732631&rft_id=info:pmid/&rfr_iscdi=true