Frame-based Multi-level Semantics Representation for text matching

Text matching is a fundamental and critical problem in natural language understanding (NLU), where multi-level semantics matching is the most challenging task. Human beings can always leverage their semantic knowledge, while neural computer systems first learn sentence semantic representations and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2021-11, Vol.232, p.107454, Article 107454
Hauptverfasser: Guo, Shaoru, Guan, Yong, Li, Ru, Li, Xiaoli, Tan, Hongye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 107454
container_title Knowledge-based systems
container_volume 232
creator Guo, Shaoru
Guan, Yong
Li, Ru
Li, Xiaoli
Tan, Hongye
description Text matching is a fundamental and critical problem in natural language understanding (NLU), where multi-level semantics matching is the most challenging task. Human beings can always leverage their semantic knowledge, while neural computer systems first learn sentence semantic representations and then perform text matching based on learned representation. However, without sufficient semantic information, computer systems will not perform very well. To bridge the gap, we propose a novel Frame-based Multi-level Semantics Representation (FMSR) model, which utilizes frame knowledge to extract multi-level semantic information within sentences explicitly for the text matching task. Specifically, different from existing methods that only rely on the sophisticated architectures, FMSR model, which leverages both frame and frame elements in FrameNet, is designed to integrate multi-level semantic information with attention mechanisms to learn better sentence representations. Our extensive experimental results show that FMSR model performs better than the state-of-the-art technologies on two text matching tasks.
doi_str_mv 10.1016/j.knosys.2021.107454
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599636202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705121007164</els_id><sourcerecordid>2599636202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-314309139014b9da98371b6229458e514fe53c3d6b4df78950945307e4eeefd13</originalsourceid><addsrcrecordid>eNp9kElPwzAQhS0EEmX5BxwicU7xlsUXJKgoIBUhsZwtx5mAQ2IX263ov8dVOHMaaWbem3kfQhcEzwkm5VU__7Iu7MKcYkpSq-IFP0AzUlc0rzgWh2iGRYHzChfkGJ2E0GOMKSX1DN0uvRohb1SANnvaDNHkA2xhyF5hVDYaHbIXWHsIYKOKxtmscz6L8BOzUUX9aezHGTrq1BDg_K-eovfl3dviIV893z8ubla5ZozHnBHOsCBMYMIb0SpRs4o0JaWCFzUUhHdQMM3asuFtV9Xp3zRguAIOAF1L2Cm6nHzX3n1vIETZu4236aSkhRAlK1P8tMWnLe1dCB46ufZmVH4nCZZ7WrKXEy25pyUnWkl2PckgJdga8DJoA1ZDazzoKFtn_jf4Bfeac68</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599636202</pqid></control><display><type>article</type><title>Frame-based Multi-level Semantics Representation for text matching</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Guo, Shaoru ; Guan, Yong ; Li, Ru ; Li, Xiaoli ; Tan, Hongye</creator><creatorcontrib>Guo, Shaoru ; Guan, Yong ; Li, Ru ; Li, Xiaoli ; Tan, Hongye</creatorcontrib><description>Text matching is a fundamental and critical problem in natural language understanding (NLU), where multi-level semantics matching is the most challenging task. Human beings can always leverage their semantic knowledge, while neural computer systems first learn sentence semantic representations and then perform text matching based on learned representation. However, without sufficient semantic information, computer systems will not perform very well. To bridge the gap, we propose a novel Frame-based Multi-level Semantics Representation (FMSR) model, which utilizes frame knowledge to extract multi-level semantic information within sentences explicitly for the text matching task. Specifically, different from existing methods that only rely on the sophisticated architectures, FMSR model, which leverages both frame and frame elements in FrameNet, is designed to integrate multi-level semantic information with attention mechanisms to learn better sentence representations. Our extensive experimental results show that FMSR model performs better than the state-of-the-art technologies on two text matching tasks.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2021.107454</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Frame semantics ; Matching ; Multi-level semantic representation ; Natural language (computers) ; Representations ; Semantics ; Sentences ; Text matching</subject><ispartof>Knowledge-based systems, 2021-11, Vol.232, p.107454, Article 107454</ispartof><rights>2021</rights><rights>Copyright Elsevier Science Ltd. Nov 28, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-314309139014b9da98371b6229458e514fe53c3d6b4df78950945307e4eeefd13</citedby><cites>FETCH-LOGICAL-c334t-314309139014b9da98371b6229458e514fe53c3d6b4df78950945307e4eeefd13</cites><orcidid>0000-0003-4130-3924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2021.107454$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Guo, Shaoru</creatorcontrib><creatorcontrib>Guan, Yong</creatorcontrib><creatorcontrib>Li, Ru</creatorcontrib><creatorcontrib>Li, Xiaoli</creatorcontrib><creatorcontrib>Tan, Hongye</creatorcontrib><title>Frame-based Multi-level Semantics Representation for text matching</title><title>Knowledge-based systems</title><description>Text matching is a fundamental and critical problem in natural language understanding (NLU), where multi-level semantics matching is the most challenging task. Human beings can always leverage their semantic knowledge, while neural computer systems first learn sentence semantic representations and then perform text matching based on learned representation. However, without sufficient semantic information, computer systems will not perform very well. To bridge the gap, we propose a novel Frame-based Multi-level Semantics Representation (FMSR) model, which utilizes frame knowledge to extract multi-level semantic information within sentences explicitly for the text matching task. Specifically, different from existing methods that only rely on the sophisticated architectures, FMSR model, which leverages both frame and frame elements in FrameNet, is designed to integrate multi-level semantic information with attention mechanisms to learn better sentence representations. Our extensive experimental results show that FMSR model performs better than the state-of-the-art technologies on two text matching tasks.</description><subject>Frame semantics</subject><subject>Matching</subject><subject>Multi-level semantic representation</subject><subject>Natural language (computers)</subject><subject>Representations</subject><subject>Semantics</subject><subject>Sentences</subject><subject>Text matching</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kElPwzAQhS0EEmX5BxwicU7xlsUXJKgoIBUhsZwtx5mAQ2IX263ov8dVOHMaaWbem3kfQhcEzwkm5VU__7Iu7MKcYkpSq-IFP0AzUlc0rzgWh2iGRYHzChfkGJ2E0GOMKSX1DN0uvRohb1SANnvaDNHkA2xhyF5hVDYaHbIXWHsIYKOKxtmscz6L8BOzUUX9aezHGTrq1BDg_K-eovfl3dviIV893z8ubla5ZozHnBHOsCBMYMIb0SpRs4o0JaWCFzUUhHdQMM3asuFtV9Xp3zRguAIOAF1L2Cm6nHzX3n1vIETZu4236aSkhRAlK1P8tMWnLe1dCB46ufZmVH4nCZZ7WrKXEy25pyUnWkl2PckgJdga8DJoA1ZDazzoKFtn_jf4Bfeac68</recordid><startdate>20211128</startdate><enddate>20211128</enddate><creator>Guo, Shaoru</creator><creator>Guan, Yong</creator><creator>Li, Ru</creator><creator>Li, Xiaoli</creator><creator>Tan, Hongye</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4130-3924</orcidid></search><sort><creationdate>20211128</creationdate><title>Frame-based Multi-level Semantics Representation for text matching</title><author>Guo, Shaoru ; Guan, Yong ; Li, Ru ; Li, Xiaoli ; Tan, Hongye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-314309139014b9da98371b6229458e514fe53c3d6b4df78950945307e4eeefd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Frame semantics</topic><topic>Matching</topic><topic>Multi-level semantic representation</topic><topic>Natural language (computers)</topic><topic>Representations</topic><topic>Semantics</topic><topic>Sentences</topic><topic>Text matching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Shaoru</creatorcontrib><creatorcontrib>Guan, Yong</creatorcontrib><creatorcontrib>Li, Ru</creatorcontrib><creatorcontrib>Li, Xiaoli</creatorcontrib><creatorcontrib>Tan, Hongye</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Shaoru</au><au>Guan, Yong</au><au>Li, Ru</au><au>Li, Xiaoli</au><au>Tan, Hongye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frame-based Multi-level Semantics Representation for text matching</atitle><jtitle>Knowledge-based systems</jtitle><date>2021-11-28</date><risdate>2021</risdate><volume>232</volume><spage>107454</spage><pages>107454-</pages><artnum>107454</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Text matching is a fundamental and critical problem in natural language understanding (NLU), where multi-level semantics matching is the most challenging task. Human beings can always leverage their semantic knowledge, while neural computer systems first learn sentence semantic representations and then perform text matching based on learned representation. However, without sufficient semantic information, computer systems will not perform very well. To bridge the gap, we propose a novel Frame-based Multi-level Semantics Representation (FMSR) model, which utilizes frame knowledge to extract multi-level semantic information within sentences explicitly for the text matching task. Specifically, different from existing methods that only rely on the sophisticated architectures, FMSR model, which leverages both frame and frame elements in FrameNet, is designed to integrate multi-level semantic information with attention mechanisms to learn better sentence representations. Our extensive experimental results show that FMSR model performs better than the state-of-the-art technologies on two text matching tasks.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2021.107454</doi><orcidid>https://orcid.org/0000-0003-4130-3924</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2021-11, Vol.232, p.107454, Article 107454
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2599636202
source ScienceDirect Journals (5 years ago - present)
subjects Frame semantics
Matching
Multi-level semantic representation
Natural language (computers)
Representations
Semantics
Sentences
Text matching
title Frame-based Multi-level Semantics Representation for text matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frame-based%20Multi-level%20Semantics%20Representation%20for%20text%20matching&rft.jtitle=Knowledge-based%20systems&rft.au=Guo,%20Shaoru&rft.date=2021-11-28&rft.volume=232&rft.spage=107454&rft.pages=107454-&rft.artnum=107454&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2021.107454&rft_dat=%3Cproquest_cross%3E2599636202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599636202&rft_id=info:pmid/&rft_els_id=S0950705121007164&rfr_iscdi=true