Frame-based Multi-level Semantics Representation for text matching
Text matching is a fundamental and critical problem in natural language understanding (NLU), where multi-level semantics matching is the most challenging task. Human beings can always leverage their semantic knowledge, while neural computer systems first learn sentence semantic representations and t...
Gespeichert in:
Veröffentlicht in: | Knowledge-based systems 2021-11, Vol.232, p.107454, Article 107454 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 107454 |
container_title | Knowledge-based systems |
container_volume | 232 |
creator | Guo, Shaoru Guan, Yong Li, Ru Li, Xiaoli Tan, Hongye |
description | Text matching is a fundamental and critical problem in natural language understanding (NLU), where multi-level semantics matching is the most challenging task. Human beings can always leverage their semantic knowledge, while neural computer systems first learn sentence semantic representations and then perform text matching based on learned representation. However, without sufficient semantic information, computer systems will not perform very well. To bridge the gap, we propose a novel Frame-based Multi-level Semantics Representation (FMSR) model, which utilizes frame knowledge to extract multi-level semantic information within sentences explicitly for the text matching task. Specifically, different from existing methods that only rely on the sophisticated architectures, FMSR model, which leverages both frame and frame elements in FrameNet, is designed to integrate multi-level semantic information with attention mechanisms to learn better sentence representations. Our extensive experimental results show that FMSR model performs better than the state-of-the-art technologies on two text matching tasks. |
doi_str_mv | 10.1016/j.knosys.2021.107454 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599636202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705121007164</els_id><sourcerecordid>2599636202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-314309139014b9da98371b6229458e514fe53c3d6b4df78950945307e4eeefd13</originalsourceid><addsrcrecordid>eNp9kElPwzAQhS0EEmX5BxwicU7xlsUXJKgoIBUhsZwtx5mAQ2IX263ov8dVOHMaaWbem3kfQhcEzwkm5VU__7Iu7MKcYkpSq-IFP0AzUlc0rzgWh2iGRYHzChfkGJ2E0GOMKSX1DN0uvRohb1SANnvaDNHkA2xhyF5hVDYaHbIXWHsIYKOKxtmscz6L8BOzUUX9aezHGTrq1BDg_K-eovfl3dviIV893z8ubla5ZozHnBHOsCBMYMIb0SpRs4o0JaWCFzUUhHdQMM3asuFtV9Xp3zRguAIOAF1L2Cm6nHzX3n1vIETZu4236aSkhRAlK1P8tMWnLe1dCB46ufZmVH4nCZZ7WrKXEy25pyUnWkl2PckgJdga8DJoA1ZDazzoKFtn_jf4Bfeac68</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599636202</pqid></control><display><type>article</type><title>Frame-based Multi-level Semantics Representation for text matching</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Guo, Shaoru ; Guan, Yong ; Li, Ru ; Li, Xiaoli ; Tan, Hongye</creator><creatorcontrib>Guo, Shaoru ; Guan, Yong ; Li, Ru ; Li, Xiaoli ; Tan, Hongye</creatorcontrib><description>Text matching is a fundamental and critical problem in natural language understanding (NLU), where multi-level semantics matching is the most challenging task. Human beings can always leverage their semantic knowledge, while neural computer systems first learn sentence semantic representations and then perform text matching based on learned representation. However, without sufficient semantic information, computer systems will not perform very well. To bridge the gap, we propose a novel Frame-based Multi-level Semantics Representation (FMSR) model, which utilizes frame knowledge to extract multi-level semantic information within sentences explicitly for the text matching task. Specifically, different from existing methods that only rely on the sophisticated architectures, FMSR model, which leverages both frame and frame elements in FrameNet, is designed to integrate multi-level semantic information with attention mechanisms to learn better sentence representations. Our extensive experimental results show that FMSR model performs better than the state-of-the-art technologies on two text matching tasks.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2021.107454</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Frame semantics ; Matching ; Multi-level semantic representation ; Natural language (computers) ; Representations ; Semantics ; Sentences ; Text matching</subject><ispartof>Knowledge-based systems, 2021-11, Vol.232, p.107454, Article 107454</ispartof><rights>2021</rights><rights>Copyright Elsevier Science Ltd. Nov 28, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-314309139014b9da98371b6229458e514fe53c3d6b4df78950945307e4eeefd13</citedby><cites>FETCH-LOGICAL-c334t-314309139014b9da98371b6229458e514fe53c3d6b4df78950945307e4eeefd13</cites><orcidid>0000-0003-4130-3924</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2021.107454$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Guo, Shaoru</creatorcontrib><creatorcontrib>Guan, Yong</creatorcontrib><creatorcontrib>Li, Ru</creatorcontrib><creatorcontrib>Li, Xiaoli</creatorcontrib><creatorcontrib>Tan, Hongye</creatorcontrib><title>Frame-based Multi-level Semantics Representation for text matching</title><title>Knowledge-based systems</title><description>Text matching is a fundamental and critical problem in natural language understanding (NLU), where multi-level semantics matching is the most challenging task. Human beings can always leverage their semantic knowledge, while neural computer systems first learn sentence semantic representations and then perform text matching based on learned representation. However, without sufficient semantic information, computer systems will not perform very well. To bridge the gap, we propose a novel Frame-based Multi-level Semantics Representation (FMSR) model, which utilizes frame knowledge to extract multi-level semantic information within sentences explicitly for the text matching task. Specifically, different from existing methods that only rely on the sophisticated architectures, FMSR model, which leverages both frame and frame elements in FrameNet, is designed to integrate multi-level semantic information with attention mechanisms to learn better sentence representations. Our extensive experimental results show that FMSR model performs better than the state-of-the-art technologies on two text matching tasks.</description><subject>Frame semantics</subject><subject>Matching</subject><subject>Multi-level semantic representation</subject><subject>Natural language (computers)</subject><subject>Representations</subject><subject>Semantics</subject><subject>Sentences</subject><subject>Text matching</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kElPwzAQhS0EEmX5BxwicU7xlsUXJKgoIBUhsZwtx5mAQ2IX263ov8dVOHMaaWbem3kfQhcEzwkm5VU__7Iu7MKcYkpSq-IFP0AzUlc0rzgWh2iGRYHzChfkGJ2E0GOMKSX1DN0uvRohb1SANnvaDNHkA2xhyF5hVDYaHbIXWHsIYKOKxtmscz6L8BOzUUX9aezHGTrq1BDg_K-eovfl3dviIV893z8ubla5ZozHnBHOsCBMYMIb0SpRs4o0JaWCFzUUhHdQMM3asuFtV9Xp3zRguAIOAF1L2Cm6nHzX3n1vIETZu4236aSkhRAlK1P8tMWnLe1dCB46ufZmVH4nCZZ7WrKXEy25pyUnWkl2PckgJdga8DJoA1ZDazzoKFtn_jf4Bfeac68</recordid><startdate>20211128</startdate><enddate>20211128</enddate><creator>Guo, Shaoru</creator><creator>Guan, Yong</creator><creator>Li, Ru</creator><creator>Li, Xiaoli</creator><creator>Tan, Hongye</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4130-3924</orcidid></search><sort><creationdate>20211128</creationdate><title>Frame-based Multi-level Semantics Representation for text matching</title><author>Guo, Shaoru ; Guan, Yong ; Li, Ru ; Li, Xiaoli ; Tan, Hongye</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-314309139014b9da98371b6229458e514fe53c3d6b4df78950945307e4eeefd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Frame semantics</topic><topic>Matching</topic><topic>Multi-level semantic representation</topic><topic>Natural language (computers)</topic><topic>Representations</topic><topic>Semantics</topic><topic>Sentences</topic><topic>Text matching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Shaoru</creatorcontrib><creatorcontrib>Guan, Yong</creatorcontrib><creatorcontrib>Li, Ru</creatorcontrib><creatorcontrib>Li, Xiaoli</creatorcontrib><creatorcontrib>Tan, Hongye</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Shaoru</au><au>Guan, Yong</au><au>Li, Ru</au><au>Li, Xiaoli</au><au>Tan, Hongye</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frame-based Multi-level Semantics Representation for text matching</atitle><jtitle>Knowledge-based systems</jtitle><date>2021-11-28</date><risdate>2021</risdate><volume>232</volume><spage>107454</spage><pages>107454-</pages><artnum>107454</artnum><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>Text matching is a fundamental and critical problem in natural language understanding (NLU), where multi-level semantics matching is the most challenging task. Human beings can always leverage their semantic knowledge, while neural computer systems first learn sentence semantic representations and then perform text matching based on learned representation. However, without sufficient semantic information, computer systems will not perform very well. To bridge the gap, we propose a novel Frame-based Multi-level Semantics Representation (FMSR) model, which utilizes frame knowledge to extract multi-level semantic information within sentences explicitly for the text matching task. Specifically, different from existing methods that only rely on the sophisticated architectures, FMSR model, which leverages both frame and frame elements in FrameNet, is designed to integrate multi-level semantic information with attention mechanisms to learn better sentence representations. Our extensive experimental results show that FMSR model performs better than the state-of-the-art technologies on two text matching tasks.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2021.107454</doi><orcidid>https://orcid.org/0000-0003-4130-3924</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-7051 |
ispartof | Knowledge-based systems, 2021-11, Vol.232, p.107454, Article 107454 |
issn | 0950-7051 1872-7409 |
language | eng |
recordid | cdi_proquest_journals_2599636202 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Frame semantics Matching Multi-level semantic representation Natural language (computers) Representations Semantics Sentences Text matching |
title | Frame-based Multi-level Semantics Representation for text matching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frame-based%20Multi-level%20Semantics%20Representation%20for%20text%20matching&rft.jtitle=Knowledge-based%20systems&rft.au=Guo,%20Shaoru&rft.date=2021-11-28&rft.volume=232&rft.spage=107454&rft.pages=107454-&rft.artnum=107454&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2021.107454&rft_dat=%3Cproquest_cross%3E2599636202%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599636202&rft_id=info:pmid/&rft_els_id=S0950705121007164&rfr_iscdi=true |