Toward a quantum computing algorithm to quantify classical and quantum correlation of system states
Optimal measurement is required to obtain the quantum and classical correlations of a quantum state, and the crucial difficulty is how to acquire the maximal information about one system by measuring the other part; in other words, getting the maximum information corresponds to preparing the best me...
Gespeichert in:
Veröffentlicht in: | Quantum information processing 2021-12, Vol.20 (12), Article 393 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Quantum information processing |
container_volume | 20 |
creator | Mahdian, M. Yeganeh, H. Davoodi |
description | Optimal measurement is required to obtain the quantum and classical correlations of a quantum state, and the crucial difficulty is how to acquire the maximal information about one system by measuring the other part; in other words, getting the maximum information corresponds to preparing the best measurement operators. Within a general setup, we designed a variational hybrid quantum–classical algorithm to achieve classical and quantum correlations for system states under the Noisy-Intermediate Scale Quantum technology. To employ, first, we map the density matrix to the vector representation, which displays it in a doubled Hilbert space, and it is converted to a pure state. Then, we apply the measurement operators to a part of the subsystem and use variational principle and a classical optimization for the determination of the amount of correlation. We numerically test the performance of our algorithm at finding a correlation of some density matrices, and the output of our algorithm is compatible with the exact calculation. |
doi_str_mv | 10.1007/s11128-021-03331-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599617327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599617327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-630f9c05a94542fbd07ab18ae021e4d880cec3d9967975ffa89cb106e9a387553</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczQf3WRzlOIXCF7qOUyzSd2yu2mTLNJ_b-wKevI0A_M-78y8CF0zessoVXeJMcZrQjkjVAjBiDxBM1YpQZgQ_PTYU0JVVZ2ji5S2tChlLWfIrsInxAYD3o8w5LHHNvS7MbfDBkO3CbHNHz3OYRq3_oBtBym1FjoMQ_OHitF1kNsw4OBxOqTsepwyZJcu0ZmHLrmrnzpH748Pq-UzeX17elnevxIrmM5ECuq1pRXoRbXgft1QBWtWgyu3ukVT19Q6KxqtpdKq8h5qbdeMSqdB1OUzMUc3k-8uhv3oUjbbMMahrDS8KhhTgqui4pPKxpBSdN7sYttDPBhGzXeYZgrTlLXmGKaRBRITlIp42Lj4a_0P9QVin3jP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599617327</pqid></control><display><type>article</type><title>Toward a quantum computing algorithm to quantify classical and quantum correlation of system states</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mahdian, M. ; Yeganeh, H. Davoodi</creator><creatorcontrib>Mahdian, M. ; Yeganeh, H. Davoodi</creatorcontrib><description>Optimal measurement is required to obtain the quantum and classical correlations of a quantum state, and the crucial difficulty is how to acquire the maximal information about one system by measuring the other part; in other words, getting the maximum information corresponds to preparing the best measurement operators. Within a general setup, we designed a variational hybrid quantum–classical algorithm to achieve classical and quantum correlations for system states under the Noisy-Intermediate Scale Quantum technology. To employ, first, we map the density matrix to the vector representation, which displays it in a doubled Hilbert space, and it is converted to a pure state. Then, we apply the measurement operators to a part of the subsystem and use variational principle and a classical optimization for the determination of the amount of correlation. We numerically test the performance of our algorithm at finding a correlation of some density matrices, and the output of our algorithm is compatible with the exact calculation.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-021-03331-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Data Structures and Information Theory ; Density ; Hilbert space ; Mathematical analysis ; Mathematical Physics ; Operators (mathematics) ; Optimization ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Spintronics ; Subsystems</subject><ispartof>Quantum information processing, 2021-12, Vol.20 (12), Article 393</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-630f9c05a94542fbd07ab18ae021e4d880cec3d9967975ffa89cb106e9a387553</citedby><cites>FETCH-LOGICAL-c319t-630f9c05a94542fbd07ab18ae021e4d880cec3d9967975ffa89cb106e9a387553</cites><orcidid>0000-0002-4097-5000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-021-03331-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-021-03331-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Mahdian, M.</creatorcontrib><creatorcontrib>Yeganeh, H. Davoodi</creatorcontrib><title>Toward a quantum computing algorithm to quantify classical and quantum correlation of system states</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>Optimal measurement is required to obtain the quantum and classical correlations of a quantum state, and the crucial difficulty is how to acquire the maximal information about one system by measuring the other part; in other words, getting the maximum information corresponds to preparing the best measurement operators. Within a general setup, we designed a variational hybrid quantum–classical algorithm to achieve classical and quantum correlations for system states under the Noisy-Intermediate Scale Quantum technology. To employ, first, we map the density matrix to the vector representation, which displays it in a doubled Hilbert space, and it is converted to a pure state. Then, we apply the measurement operators to a part of the subsystem and use variational principle and a classical optimization for the determination of the amount of correlation. We numerically test the performance of our algorithm at finding a correlation of some density matrices, and the output of our algorithm is compatible with the exact calculation.</description><subject>Algorithms</subject><subject>Data Structures and Information Theory</subject><subject>Density</subject><subject>Hilbert space</subject><subject>Mathematical analysis</subject><subject>Mathematical Physics</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Spintronics</subject><subject>Subsystems</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczQf3WRzlOIXCF7qOUyzSd2yu2mTLNJ_b-wKevI0A_M-78y8CF0zessoVXeJMcZrQjkjVAjBiDxBM1YpQZgQ_PTYU0JVVZ2ji5S2tChlLWfIrsInxAYD3o8w5LHHNvS7MbfDBkO3CbHNHz3OYRq3_oBtBym1FjoMQ_OHitF1kNsw4OBxOqTsepwyZJcu0ZmHLrmrnzpH748Pq-UzeX17elnevxIrmM5ECuq1pRXoRbXgft1QBWtWgyu3ukVT19Q6KxqtpdKq8h5qbdeMSqdB1OUzMUc3k-8uhv3oUjbbMMahrDS8KhhTgqui4pPKxpBSdN7sYttDPBhGzXeYZgrTlLXmGKaRBRITlIp42Lj4a_0P9QVin3jP</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Mahdian, M.</creator><creator>Yeganeh, H. Davoodi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4097-5000</orcidid></search><sort><creationdate>20211201</creationdate><title>Toward a quantum computing algorithm to quantify classical and quantum correlation of system states</title><author>Mahdian, M. ; Yeganeh, H. Davoodi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-630f9c05a94542fbd07ab18ae021e4d880cec3d9967975ffa89cb106e9a387553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Data Structures and Information Theory</topic><topic>Density</topic><topic>Hilbert space</topic><topic>Mathematical analysis</topic><topic>Mathematical Physics</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Spintronics</topic><topic>Subsystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahdian, M.</creatorcontrib><creatorcontrib>Yeganeh, H. Davoodi</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahdian, M.</au><au>Yeganeh, H. Davoodi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward a quantum computing algorithm to quantify classical and quantum correlation of system states</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>20</volume><issue>12</issue><artnum>393</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>Optimal measurement is required to obtain the quantum and classical correlations of a quantum state, and the crucial difficulty is how to acquire the maximal information about one system by measuring the other part; in other words, getting the maximum information corresponds to preparing the best measurement operators. Within a general setup, we designed a variational hybrid quantum–classical algorithm to achieve classical and quantum correlations for system states under the Noisy-Intermediate Scale Quantum technology. To employ, first, we map the density matrix to the vector representation, which displays it in a doubled Hilbert space, and it is converted to a pure state. Then, we apply the measurement operators to a part of the subsystem and use variational principle and a classical optimization for the determination of the amount of correlation. We numerically test the performance of our algorithm at finding a correlation of some density matrices, and the output of our algorithm is compatible with the exact calculation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-021-03331-6</doi><orcidid>https://orcid.org/0000-0002-4097-5000</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1570-0755 |
ispartof | Quantum information processing, 2021-12, Vol.20 (12), Article 393 |
issn | 1570-0755 1573-1332 |
language | eng |
recordid | cdi_proquest_journals_2599617327 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Data Structures and Information Theory Density Hilbert space Mathematical analysis Mathematical Physics Operators (mathematics) Optimization Physics Physics and Astronomy Quantum Computing Quantum Information Technology Quantum Physics Spintronics Subsystems |
title | Toward a quantum computing algorithm to quantify classical and quantum correlation of system states |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A50%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20a%20quantum%20computing%20algorithm%20to%20quantify%20classical%20and%20quantum%20correlation%20of%20system%20states&rft.jtitle=Quantum%20information%20processing&rft.au=Mahdian,%20M.&rft.date=2021-12-01&rft.volume=20&rft.issue=12&rft.artnum=393&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-021-03331-6&rft_dat=%3Cproquest_cross%3E2599617327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599617327&rft_id=info:pmid/&rfr_iscdi=true |