Toward a quantum computing algorithm to quantify classical and quantum correlation of system states

Optimal measurement is required to obtain the quantum and classical correlations of a quantum state, and the crucial difficulty is how to acquire the maximal information about one system by measuring the other part; in other words, getting the maximum information corresponds to preparing the best me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum information processing 2021-12, Vol.20 (12), Article 393
Hauptverfasser: Mahdian, M., Yeganeh, H. Davoodi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Quantum information processing
container_volume 20
creator Mahdian, M.
Yeganeh, H. Davoodi
description Optimal measurement is required to obtain the quantum and classical correlations of a quantum state, and the crucial difficulty is how to acquire the maximal information about one system by measuring the other part; in other words, getting the maximum information corresponds to preparing the best measurement operators. Within a general setup, we designed a variational hybrid quantum–classical algorithm to achieve classical and quantum correlations for system states under the Noisy-Intermediate Scale Quantum technology. To employ, first, we map the density matrix to the vector representation, which displays it in a doubled Hilbert space, and it is converted to a pure state. Then, we apply the measurement operators to a part of the subsystem and use variational principle and a classical optimization for the determination of the amount of correlation. We numerically test the performance of our algorithm at finding a correlation of some density matrices, and the output of our algorithm is compatible with the exact calculation.
doi_str_mv 10.1007/s11128-021-03331-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599617327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599617327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-630f9c05a94542fbd07ab18ae021e4d880cec3d9967975ffa89cb106e9a387553</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wFPAczQf3WRzlOIXCF7qOUyzSd2yu2mTLNJ_b-wKevI0A_M-78y8CF0zessoVXeJMcZrQjkjVAjBiDxBM1YpQZgQ_PTYU0JVVZ2ji5S2tChlLWfIrsInxAYD3o8w5LHHNvS7MbfDBkO3CbHNHz3OYRq3_oBtBym1FjoMQ_OHitF1kNsw4OBxOqTsepwyZJcu0ZmHLrmrnzpH748Pq-UzeX17elnevxIrmM5ECuq1pRXoRbXgft1QBWtWgyu3ukVT19Q6KxqtpdKq8h5qbdeMSqdB1OUzMUc3k-8uhv3oUjbbMMahrDS8KhhTgqui4pPKxpBSdN7sYttDPBhGzXeYZgrTlLXmGKaRBRITlIp42Lj4a_0P9QVin3jP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599617327</pqid></control><display><type>article</type><title>Toward a quantum computing algorithm to quantify classical and quantum correlation of system states</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mahdian, M. ; Yeganeh, H. Davoodi</creator><creatorcontrib>Mahdian, M. ; Yeganeh, H. Davoodi</creatorcontrib><description>Optimal measurement is required to obtain the quantum and classical correlations of a quantum state, and the crucial difficulty is how to acquire the maximal information about one system by measuring the other part; in other words, getting the maximum information corresponds to preparing the best measurement operators. Within a general setup, we designed a variational hybrid quantum–classical algorithm to achieve classical and quantum correlations for system states under the Noisy-Intermediate Scale Quantum technology. To employ, first, we map the density matrix to the vector representation, which displays it in a doubled Hilbert space, and it is converted to a pure state. Then, we apply the measurement operators to a part of the subsystem and use variational principle and a classical optimization for the determination of the amount of correlation. We numerically test the performance of our algorithm at finding a correlation of some density matrices, and the output of our algorithm is compatible with the exact calculation.</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-021-03331-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Data Structures and Information Theory ; Density ; Hilbert space ; Mathematical analysis ; Mathematical Physics ; Operators (mathematics) ; Optimization ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Spintronics ; Subsystems</subject><ispartof>Quantum information processing, 2021-12, Vol.20 (12), Article 393</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-630f9c05a94542fbd07ab18ae021e4d880cec3d9967975ffa89cb106e9a387553</citedby><cites>FETCH-LOGICAL-c319t-630f9c05a94542fbd07ab18ae021e4d880cec3d9967975ffa89cb106e9a387553</cites><orcidid>0000-0002-4097-5000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-021-03331-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-021-03331-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Mahdian, M.</creatorcontrib><creatorcontrib>Yeganeh, H. Davoodi</creatorcontrib><title>Toward a quantum computing algorithm to quantify classical and quantum correlation of system states</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>Optimal measurement is required to obtain the quantum and classical correlations of a quantum state, and the crucial difficulty is how to acquire the maximal information about one system by measuring the other part; in other words, getting the maximum information corresponds to preparing the best measurement operators. Within a general setup, we designed a variational hybrid quantum–classical algorithm to achieve classical and quantum correlations for system states under the Noisy-Intermediate Scale Quantum technology. To employ, first, we map the density matrix to the vector representation, which displays it in a doubled Hilbert space, and it is converted to a pure state. Then, we apply the measurement operators to a part of the subsystem and use variational principle and a classical optimization for the determination of the amount of correlation. We numerically test the performance of our algorithm at finding a correlation of some density matrices, and the output of our algorithm is compatible with the exact calculation.</description><subject>Algorithms</subject><subject>Data Structures and Information Theory</subject><subject>Density</subject><subject>Hilbert space</subject><subject>Mathematical analysis</subject><subject>Mathematical Physics</subject><subject>Operators (mathematics)</subject><subject>Optimization</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Spintronics</subject><subject>Subsystems</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wFPAczQf3WRzlOIXCF7qOUyzSd2yu2mTLNJ_b-wKevI0A_M-78y8CF0zessoVXeJMcZrQjkjVAjBiDxBM1YpQZgQ_PTYU0JVVZ2ji5S2tChlLWfIrsInxAYD3o8w5LHHNvS7MbfDBkO3CbHNHz3OYRq3_oBtBym1FjoMQ_OHitF1kNsw4OBxOqTsepwyZJcu0ZmHLrmrnzpH748Pq-UzeX17elnevxIrmM5ECuq1pRXoRbXgft1QBWtWgyu3ukVT19Q6KxqtpdKq8h5qbdeMSqdB1OUzMUc3k-8uhv3oUjbbMMahrDS8KhhTgqui4pPKxpBSdN7sYttDPBhGzXeYZgrTlLXmGKaRBRITlIp42Lj4a_0P9QVin3jP</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Mahdian, M.</creator><creator>Yeganeh, H. Davoodi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4097-5000</orcidid></search><sort><creationdate>20211201</creationdate><title>Toward a quantum computing algorithm to quantify classical and quantum correlation of system states</title><author>Mahdian, M. ; Yeganeh, H. Davoodi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-630f9c05a94542fbd07ab18ae021e4d880cec3d9967975ffa89cb106e9a387553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Data Structures and Information Theory</topic><topic>Density</topic><topic>Hilbert space</topic><topic>Mathematical analysis</topic><topic>Mathematical Physics</topic><topic>Operators (mathematics)</topic><topic>Optimization</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Spintronics</topic><topic>Subsystems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahdian, M.</creatorcontrib><creatorcontrib>Yeganeh, H. Davoodi</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahdian, M.</au><au>Yeganeh, H. Davoodi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward a quantum computing algorithm to quantify classical and quantum correlation of system states</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>20</volume><issue>12</issue><artnum>393</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>Optimal measurement is required to obtain the quantum and classical correlations of a quantum state, and the crucial difficulty is how to acquire the maximal information about one system by measuring the other part; in other words, getting the maximum information corresponds to preparing the best measurement operators. Within a general setup, we designed a variational hybrid quantum–classical algorithm to achieve classical and quantum correlations for system states under the Noisy-Intermediate Scale Quantum technology. To employ, first, we map the density matrix to the vector representation, which displays it in a doubled Hilbert space, and it is converted to a pure state. Then, we apply the measurement operators to a part of the subsystem and use variational principle and a classical optimization for the determination of the amount of correlation. We numerically test the performance of our algorithm at finding a correlation of some density matrices, and the output of our algorithm is compatible with the exact calculation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-021-03331-6</doi><orcidid>https://orcid.org/0000-0002-4097-5000</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1570-0755
ispartof Quantum information processing, 2021-12, Vol.20 (12), Article 393
issn 1570-0755
1573-1332
language eng
recordid cdi_proquest_journals_2599617327
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Data Structures and Information Theory
Density
Hilbert space
Mathematical analysis
Mathematical Physics
Operators (mathematics)
Optimization
Physics
Physics and Astronomy
Quantum Computing
Quantum Information Technology
Quantum Physics
Spintronics
Subsystems
title Toward a quantum computing algorithm to quantify classical and quantum correlation of system states
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A50%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20a%20quantum%20computing%20algorithm%20to%20quantify%20classical%20and%20quantum%20correlation%20of%20system%20states&rft.jtitle=Quantum%20information%20processing&rft.au=Mahdian,%20M.&rft.date=2021-12-01&rft.volume=20&rft.issue=12&rft.artnum=393&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-021-03331-6&rft_dat=%3Cproquest_cross%3E2599617327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599617327&rft_id=info:pmid/&rfr_iscdi=true