Fair Weather Neutron Bursts From Photonuclear Reactions by Extensive Air Shower Core Interactions in the Ground and Implications for Terrestrial Gamma‐ray Flash Signatures

We report on anomalously long duration (2 ms) count rate bursts following the impact of cosmic ray showers near a 7.62 cm x⊘7.62 cm LaBr3 scintillation detector at the High Altitude Water Cherenkov array in Mexico, previously described by Stenkin et al. (2001), and termed “neutron bursts.” The large...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2021-03, Vol.48 (6), p.n/a
Hauptverfasser: Bowers, Gregory S., Shao, Xuan‐Min, Blaine, William, Dingus, Brenda, Smith, David M., Chaffin, Jeff, Ortberg, John, Rassoul, Hamid K., Ho, Cheng, Nellen, Lukas, Fraija, Nissim, Alvarez, C., Arteaga‐Velázquez, J. C., Baghmanyan, V., Belmont‐Moreno, E., Caballero‐Mora, K. S., Carramiñana, A., Casanova, S., De la Fuente, E., González, M. M., Hueyotl‐Zahuantitla, F., Martinez, O., Matthews, J. A., Moreno, E., Newbold, M., Pérez‐Pérez, E. G., Torres, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page
container_title Geophysical research letters
container_volume 48
creator Bowers, Gregory S.
Shao, Xuan‐Min
Blaine, William
Dingus, Brenda
Smith, David M.
Chaffin, Jeff
Ortberg, John
Rassoul, Hamid K.
Ho, Cheng
Nellen, Lukas
Fraija, Nissim
Alvarez, C.
Arteaga‐Velázquez, J. C.
Baghmanyan, V.
Belmont‐Moreno, E.
Caballero‐Mora, K. S.
Carramiñana, A.
Casanova, S.
De la Fuente, E.
González, M. M.
Hueyotl‐Zahuantitla, F.
Martinez, O.
Matthews, J. A.
Moreno, E.
Newbold, M.
Pérez‐Pérez, E. G.
Torres, I.
description We report on anomalously long duration (2 ms) count rate bursts following the impact of cosmic ray showers near a 7.62 cm x⊘7.62 cm LaBr3 scintillation detector at the High Altitude Water Cherenkov array in Mexico, previously described by Stenkin et al. (2001), and termed “neutron bursts.” The largest burst produced 198 counts within 2 ms in our LaBr3 detector. We simulate the neutron burst albedo flux (that is, secondary emissions from an extensive air shower core impacting the ground), and show that (1) the characteristic spectra and count rates are well explained by neutron absorption in the ground and (2) any cosmic ray secondary that produces neutrons, either through hadron inelastic collisions, or photoneutron production by gamma‐rays, produces the same characteristic spectra. This implies that other natural phenomena that produce downward beams of gamma‐rays, like Terrestrial gamma ray flashes, should produce a similar “neutron burst” signature from the photoneutron reactions occurring in the soil. Plain Language Summary When very large cosmic ray showers (CRS) impact the ground, neutrons are produced in the soil that will rattle around until they become captured by soil particles and release energetic gamma‐rays. This produces a slow explosion of particles emanating from the ground following a CRS impact, and is termed a 'neutron burst'. We present recent observations of neutron bursts from a hand held sized gamma‐ray detector at the High Altitude Water Cherenkov (HAWC) array in Mexico, that exhibit interesting spectral features (the presence of positron annihilation), and an interesting time structure (hundreds of counts within a few ms). Our simulations indicate that Terrestrial gamma‐ray flashes (TGFs, bursts of gamma‐rays associated with lightning) should also produce these neutron bursts. An implication of this work is that existing deployments of ground based TGF instruments, comprised of small gamma‐ray detectors, can additionally be used to observe signatures of large cosmic ray showers on clear days. Key Points We report on fairweather count rate bursts with 2 ms duration following the impact of a large cosmic ray shower near a small scintillation detector at HAWC Simulations show that the spectra and decay time can be produced by either hadronic interactions, or photoneutron reactions from gamma‐rays These results imply that downward TGFs could produce a similar delayed neutron signature in the soil near ground based detectors
doi_str_mv 10.1029/2020GL090033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599309457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599309457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3720-de2436c9876971cb36b49c6e7810c132d89dc4bb1cfd4dc679e2ea6791dfcccf3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhq0KpC6lNx7AEtcujO00WR_LqhtWWgFqi3qMHGfSdZXY27HTsjcegRfhpXgSjLZInDiM_pHm0z-j-Rl7I-CdAKnfS5BQb0ADKHXEZkIXxXwBUL1gMwCde1mVx-xVjPeQEVBixn6ujCN-iyZtkfgnnBIFzz9MFFPkKwoj_7INKfjJDmiIX6GxyQUfebvnl98S-ugekV9kj-tteMoWy0DI1z4h_SWd59mc1xQm33GTaz3uBmfNYdwH4jdIhDGRMwOvzTiaX99_kNnz1WDill-7O2_SlInX7GVvhoinz3rCvq4ub5Yf55vP9Xp5sZlbVUmYdygLVVq9qEpdCduqsi20LbFaCLBCyW6hO1u0rbB9V3S2rDRKNFlE11tre3XC3h58dxQepnxZcx8m8nllI8-1VvmZ51Wmzg6UpRAjYd_syI2G9o2A5k8gzb-BZFwe8Cc34P6_bFNfbUoJJajf6U-QlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599309457</pqid></control><display><type>article</type><title>Fair Weather Neutron Bursts From Photonuclear Reactions by Extensive Air Shower Core Interactions in the Ground and Implications for Terrestrial Gamma‐ray Flash Signatures</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bowers, Gregory S. ; Shao, Xuan‐Min ; Blaine, William ; Dingus, Brenda ; Smith, David M. ; Chaffin, Jeff ; Ortberg, John ; Rassoul, Hamid K. ; Ho, Cheng ; Nellen, Lukas ; Fraija, Nissim ; Alvarez, C. ; Arteaga‐Velázquez, J. C. ; Baghmanyan, V. ; Belmont‐Moreno, E. ; Caballero‐Mora, K. S. ; Carramiñana, A. ; Casanova, S. ; De la Fuente, E. ; González, M. M. ; Hueyotl‐Zahuantitla, F. ; Martinez, O. ; Matthews, J. A. ; Moreno, E. ; Newbold, M. ; Pérez‐Pérez, E. G. ; Torres, I.</creator><creatorcontrib>Bowers, Gregory S. ; Shao, Xuan‐Min ; Blaine, William ; Dingus, Brenda ; Smith, David M. ; Chaffin, Jeff ; Ortberg, John ; Rassoul, Hamid K. ; Ho, Cheng ; Nellen, Lukas ; Fraija, Nissim ; Alvarez, C. ; Arteaga‐Velázquez, J. C. ; Baghmanyan, V. ; Belmont‐Moreno, E. ; Caballero‐Mora, K. S. ; Carramiñana, A. ; Casanova, S. ; De la Fuente, E. ; González, M. M. ; Hueyotl‐Zahuantitla, F. ; Martinez, O. ; Matthews, J. A. ; Moreno, E. ; Newbold, M. ; Pérez‐Pérez, E. G. ; Torres, I.</creatorcontrib><description>We report on anomalously long duration (2 ms) count rate bursts following the impact of cosmic ray showers near a 7.62 cm x⊘7.62 cm LaBr3 scintillation detector at the High Altitude Water Cherenkov array in Mexico, previously described by Stenkin et al. (2001), and termed “neutron bursts.” The largest burst produced 198 counts within 2 ms in our LaBr3 detector. We simulate the neutron burst albedo flux (that is, secondary emissions from an extensive air shower core impacting the ground), and show that (1) the characteristic spectra and count rates are well explained by neutron absorption in the ground and (2) any cosmic ray secondary that produces neutrons, either through hadron inelastic collisions, or photoneutron production by gamma‐rays, produces the same characteristic spectra. This implies that other natural phenomena that produce downward beams of gamma‐rays, like Terrestrial gamma ray flashes, should produce a similar “neutron burst” signature from the photoneutron reactions occurring in the soil. Plain Language Summary When very large cosmic ray showers (CRS) impact the ground, neutrons are produced in the soil that will rattle around until they become captured by soil particles and release energetic gamma‐rays. This produces a slow explosion of particles emanating from the ground following a CRS impact, and is termed a 'neutron burst'. We present recent observations of neutron bursts from a hand held sized gamma‐ray detector at the High Altitude Water Cherenkov (HAWC) array in Mexico, that exhibit interesting spectral features (the presence of positron annihilation), and an interesting time structure (hundreds of counts within a few ms). Our simulations indicate that Terrestrial gamma‐ray flashes (TGFs, bursts of gamma‐rays associated with lightning) should also produce these neutron bursts. An implication of this work is that existing deployments of ground based TGF instruments, comprised of small gamma‐ray detectors, can additionally be used to observe signatures of large cosmic ray showers on clear days. Key Points We report on fairweather count rate bursts with 2 ms duration following the impact of a large cosmic ray shower near a small scintillation detector at HAWC Simulations show that the spectra and decay time can be produced by either hadronic interactions, or photoneutron reactions from gamma‐rays These results imply that downward TGFs could produce a similar delayed neutron signature in the soil near ground based detectors</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2020GL090033</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Albedo ; Altitude ; Arrays ; Bursts ; Cosmic radiation ; cosmic ray albedo ; Cosmic ray showers ; Cosmic rays ; Detectors ; Extensive air showers ; Fair weather ; Gamma ray flashes ; Gamma rays ; High altitude ; High-altitude environments ; Inelastic collisions ; Instruments ; Lightning ; Natural phenomena ; Neutron absorption ; neutron bursts ; neutron flash ; Neutrons ; Particle physics ; Photonuclear reactions ; Positron annihilation ; Sensors ; Signatures ; Soil ; Soil particles ; Soils ; Spectra ; terrestrial gamma ray flashes ; TGF</subject><ispartof>Geophysical research letters, 2021-03, Vol.48 (6), p.n/a</ispartof><rights>2021. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3720-de2436c9876971cb36b49c6e7810c132d89dc4bb1cfd4dc679e2ea6791dfcccf3</citedby><cites>FETCH-LOGICAL-c3720-de2436c9876971cb36b49c6e7810c132d89dc4bb1cfd4dc679e2ea6791dfcccf3</cites><orcidid>0000-0001-5998-4938 ; 0000-0002-0542-5759 ; 0000-0002-8553-3302 ; 0000-0002-6159-7918 ; 0000-0002-6072-249X ; 0000-0002-2002-4611 ; 0000-0002-1689-3945 ; 0000-0003-1059-8731 ; 0000-0001-9643-4134 ; 0000-0002-1114-2640 ; 0000-0003-3207-105X ; 0000-0003-0681-7276 ; 0000-0001-9231-8718 ; 0000-0002-9524-2234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020GL090033$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020GL090033$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Bowers, Gregory S.</creatorcontrib><creatorcontrib>Shao, Xuan‐Min</creatorcontrib><creatorcontrib>Blaine, William</creatorcontrib><creatorcontrib>Dingus, Brenda</creatorcontrib><creatorcontrib>Smith, David M.</creatorcontrib><creatorcontrib>Chaffin, Jeff</creatorcontrib><creatorcontrib>Ortberg, John</creatorcontrib><creatorcontrib>Rassoul, Hamid K.</creatorcontrib><creatorcontrib>Ho, Cheng</creatorcontrib><creatorcontrib>Nellen, Lukas</creatorcontrib><creatorcontrib>Fraija, Nissim</creatorcontrib><creatorcontrib>Alvarez, C.</creatorcontrib><creatorcontrib>Arteaga‐Velázquez, J. C.</creatorcontrib><creatorcontrib>Baghmanyan, V.</creatorcontrib><creatorcontrib>Belmont‐Moreno, E.</creatorcontrib><creatorcontrib>Caballero‐Mora, K. S.</creatorcontrib><creatorcontrib>Carramiñana, A.</creatorcontrib><creatorcontrib>Casanova, S.</creatorcontrib><creatorcontrib>De la Fuente, E.</creatorcontrib><creatorcontrib>González, M. M.</creatorcontrib><creatorcontrib>Hueyotl‐Zahuantitla, F.</creatorcontrib><creatorcontrib>Martinez, O.</creatorcontrib><creatorcontrib>Matthews, J. A.</creatorcontrib><creatorcontrib>Moreno, E.</creatorcontrib><creatorcontrib>Newbold, M.</creatorcontrib><creatorcontrib>Pérez‐Pérez, E. G.</creatorcontrib><creatorcontrib>Torres, I.</creatorcontrib><title>Fair Weather Neutron Bursts From Photonuclear Reactions by Extensive Air Shower Core Interactions in the Ground and Implications for Terrestrial Gamma‐ray Flash Signatures</title><title>Geophysical research letters</title><description>We report on anomalously long duration (2 ms) count rate bursts following the impact of cosmic ray showers near a 7.62 cm x⊘7.62 cm LaBr3 scintillation detector at the High Altitude Water Cherenkov array in Mexico, previously described by Stenkin et al. (2001), and termed “neutron bursts.” The largest burst produced 198 counts within 2 ms in our LaBr3 detector. We simulate the neutron burst albedo flux (that is, secondary emissions from an extensive air shower core impacting the ground), and show that (1) the characteristic spectra and count rates are well explained by neutron absorption in the ground and (2) any cosmic ray secondary that produces neutrons, either through hadron inelastic collisions, or photoneutron production by gamma‐rays, produces the same characteristic spectra. This implies that other natural phenomena that produce downward beams of gamma‐rays, like Terrestrial gamma ray flashes, should produce a similar “neutron burst” signature from the photoneutron reactions occurring in the soil. Plain Language Summary When very large cosmic ray showers (CRS) impact the ground, neutrons are produced in the soil that will rattle around until they become captured by soil particles and release energetic gamma‐rays. This produces a slow explosion of particles emanating from the ground following a CRS impact, and is termed a 'neutron burst'. We present recent observations of neutron bursts from a hand held sized gamma‐ray detector at the High Altitude Water Cherenkov (HAWC) array in Mexico, that exhibit interesting spectral features (the presence of positron annihilation), and an interesting time structure (hundreds of counts within a few ms). Our simulations indicate that Terrestrial gamma‐ray flashes (TGFs, bursts of gamma‐rays associated with lightning) should also produce these neutron bursts. An implication of this work is that existing deployments of ground based TGF instruments, comprised of small gamma‐ray detectors, can additionally be used to observe signatures of large cosmic ray showers on clear days. Key Points We report on fairweather count rate bursts with 2 ms duration following the impact of a large cosmic ray shower near a small scintillation detector at HAWC Simulations show that the spectra and decay time can be produced by either hadronic interactions, or photoneutron reactions from gamma‐rays These results imply that downward TGFs could produce a similar delayed neutron signature in the soil near ground based detectors</description><subject>Albedo</subject><subject>Altitude</subject><subject>Arrays</subject><subject>Bursts</subject><subject>Cosmic radiation</subject><subject>cosmic ray albedo</subject><subject>Cosmic ray showers</subject><subject>Cosmic rays</subject><subject>Detectors</subject><subject>Extensive air showers</subject><subject>Fair weather</subject><subject>Gamma ray flashes</subject><subject>Gamma rays</subject><subject>High altitude</subject><subject>High-altitude environments</subject><subject>Inelastic collisions</subject><subject>Instruments</subject><subject>Lightning</subject><subject>Natural phenomena</subject><subject>Neutron absorption</subject><subject>neutron bursts</subject><subject>neutron flash</subject><subject>Neutrons</subject><subject>Particle physics</subject><subject>Photonuclear reactions</subject><subject>Positron annihilation</subject><subject>Sensors</subject><subject>Signatures</subject><subject>Soil</subject><subject>Soil particles</subject><subject>Soils</subject><subject>Spectra</subject><subject>terrestrial gamma ray flashes</subject><subject>TGF</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhq0KpC6lNx7AEtcujO00WR_LqhtWWgFqi3qMHGfSdZXY27HTsjcegRfhpXgSjLZInDiM_pHm0z-j-Rl7I-CdAKnfS5BQb0ADKHXEZkIXxXwBUL1gMwCde1mVx-xVjPeQEVBixn6ujCN-iyZtkfgnnBIFzz9MFFPkKwoj_7INKfjJDmiIX6GxyQUfebvnl98S-ugekV9kj-tteMoWy0DI1z4h_SWd59mc1xQm33GTaz3uBmfNYdwH4jdIhDGRMwOvzTiaX99_kNnz1WDill-7O2_SlInX7GVvhoinz3rCvq4ub5Yf55vP9Xp5sZlbVUmYdygLVVq9qEpdCduqsi20LbFaCLBCyW6hO1u0rbB9V3S2rDRKNFlE11tre3XC3h58dxQepnxZcx8m8nllI8-1VvmZ51Wmzg6UpRAjYd_syI2G9o2A5k8gzb-BZFwe8Cc34P6_bFNfbUoJJajf6U-QlQ</recordid><startdate>20210328</startdate><enddate>20210328</enddate><creator>Bowers, Gregory S.</creator><creator>Shao, Xuan‐Min</creator><creator>Blaine, William</creator><creator>Dingus, Brenda</creator><creator>Smith, David M.</creator><creator>Chaffin, Jeff</creator><creator>Ortberg, John</creator><creator>Rassoul, Hamid K.</creator><creator>Ho, Cheng</creator><creator>Nellen, Lukas</creator><creator>Fraija, Nissim</creator><creator>Alvarez, C.</creator><creator>Arteaga‐Velázquez, J. C.</creator><creator>Baghmanyan, V.</creator><creator>Belmont‐Moreno, E.</creator><creator>Caballero‐Mora, K. S.</creator><creator>Carramiñana, A.</creator><creator>Casanova, S.</creator><creator>De la Fuente, E.</creator><creator>González, M. M.</creator><creator>Hueyotl‐Zahuantitla, F.</creator><creator>Martinez, O.</creator><creator>Matthews, J. A.</creator><creator>Moreno, E.</creator><creator>Newbold, M.</creator><creator>Pérez‐Pérez, E. G.</creator><creator>Torres, I.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5998-4938</orcidid><orcidid>https://orcid.org/0000-0002-0542-5759</orcidid><orcidid>https://orcid.org/0000-0002-8553-3302</orcidid><orcidid>https://orcid.org/0000-0002-6159-7918</orcidid><orcidid>https://orcid.org/0000-0002-6072-249X</orcidid><orcidid>https://orcid.org/0000-0002-2002-4611</orcidid><orcidid>https://orcid.org/0000-0002-1689-3945</orcidid><orcidid>https://orcid.org/0000-0003-1059-8731</orcidid><orcidid>https://orcid.org/0000-0001-9643-4134</orcidid><orcidid>https://orcid.org/0000-0002-1114-2640</orcidid><orcidid>https://orcid.org/0000-0003-3207-105X</orcidid><orcidid>https://orcid.org/0000-0003-0681-7276</orcidid><orcidid>https://orcid.org/0000-0001-9231-8718</orcidid><orcidid>https://orcid.org/0000-0002-9524-2234</orcidid></search><sort><creationdate>20210328</creationdate><title>Fair Weather Neutron Bursts From Photonuclear Reactions by Extensive Air Shower Core Interactions in the Ground and Implications for Terrestrial Gamma‐ray Flash Signatures</title><author>Bowers, Gregory S. ; Shao, Xuan‐Min ; Blaine, William ; Dingus, Brenda ; Smith, David M. ; Chaffin, Jeff ; Ortberg, John ; Rassoul, Hamid K. ; Ho, Cheng ; Nellen, Lukas ; Fraija, Nissim ; Alvarez, C. ; Arteaga‐Velázquez, J. C. ; Baghmanyan, V. ; Belmont‐Moreno, E. ; Caballero‐Mora, K. S. ; Carramiñana, A. ; Casanova, S. ; De la Fuente, E. ; González, M. M. ; Hueyotl‐Zahuantitla, F. ; Martinez, O. ; Matthews, J. A. ; Moreno, E. ; Newbold, M. ; Pérez‐Pérez, E. G. ; Torres, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3720-de2436c9876971cb36b49c6e7810c132d89dc4bb1cfd4dc679e2ea6791dfcccf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Albedo</topic><topic>Altitude</topic><topic>Arrays</topic><topic>Bursts</topic><topic>Cosmic radiation</topic><topic>cosmic ray albedo</topic><topic>Cosmic ray showers</topic><topic>Cosmic rays</topic><topic>Detectors</topic><topic>Extensive air showers</topic><topic>Fair weather</topic><topic>Gamma ray flashes</topic><topic>Gamma rays</topic><topic>High altitude</topic><topic>High-altitude environments</topic><topic>Inelastic collisions</topic><topic>Instruments</topic><topic>Lightning</topic><topic>Natural phenomena</topic><topic>Neutron absorption</topic><topic>neutron bursts</topic><topic>neutron flash</topic><topic>Neutrons</topic><topic>Particle physics</topic><topic>Photonuclear reactions</topic><topic>Positron annihilation</topic><topic>Sensors</topic><topic>Signatures</topic><topic>Soil</topic><topic>Soil particles</topic><topic>Soils</topic><topic>Spectra</topic><topic>terrestrial gamma ray flashes</topic><topic>TGF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowers, Gregory S.</creatorcontrib><creatorcontrib>Shao, Xuan‐Min</creatorcontrib><creatorcontrib>Blaine, William</creatorcontrib><creatorcontrib>Dingus, Brenda</creatorcontrib><creatorcontrib>Smith, David M.</creatorcontrib><creatorcontrib>Chaffin, Jeff</creatorcontrib><creatorcontrib>Ortberg, John</creatorcontrib><creatorcontrib>Rassoul, Hamid K.</creatorcontrib><creatorcontrib>Ho, Cheng</creatorcontrib><creatorcontrib>Nellen, Lukas</creatorcontrib><creatorcontrib>Fraija, Nissim</creatorcontrib><creatorcontrib>Alvarez, C.</creatorcontrib><creatorcontrib>Arteaga‐Velázquez, J. C.</creatorcontrib><creatorcontrib>Baghmanyan, V.</creatorcontrib><creatorcontrib>Belmont‐Moreno, E.</creatorcontrib><creatorcontrib>Caballero‐Mora, K. S.</creatorcontrib><creatorcontrib>Carramiñana, A.</creatorcontrib><creatorcontrib>Casanova, S.</creatorcontrib><creatorcontrib>De la Fuente, E.</creatorcontrib><creatorcontrib>González, M. M.</creatorcontrib><creatorcontrib>Hueyotl‐Zahuantitla, F.</creatorcontrib><creatorcontrib>Martinez, O.</creatorcontrib><creatorcontrib>Matthews, J. A.</creatorcontrib><creatorcontrib>Moreno, E.</creatorcontrib><creatorcontrib>Newbold, M.</creatorcontrib><creatorcontrib>Pérez‐Pérez, E. G.</creatorcontrib><creatorcontrib>Torres, I.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowers, Gregory S.</au><au>Shao, Xuan‐Min</au><au>Blaine, William</au><au>Dingus, Brenda</au><au>Smith, David M.</au><au>Chaffin, Jeff</au><au>Ortberg, John</au><au>Rassoul, Hamid K.</au><au>Ho, Cheng</au><au>Nellen, Lukas</au><au>Fraija, Nissim</au><au>Alvarez, C.</au><au>Arteaga‐Velázquez, J. C.</au><au>Baghmanyan, V.</au><au>Belmont‐Moreno, E.</au><au>Caballero‐Mora, K. S.</au><au>Carramiñana, A.</au><au>Casanova, S.</au><au>De la Fuente, E.</au><au>González, M. M.</au><au>Hueyotl‐Zahuantitla, F.</au><au>Martinez, O.</au><au>Matthews, J. A.</au><au>Moreno, E.</au><au>Newbold, M.</au><au>Pérez‐Pérez, E. G.</au><au>Torres, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fair Weather Neutron Bursts From Photonuclear Reactions by Extensive Air Shower Core Interactions in the Ground and Implications for Terrestrial Gamma‐ray Flash Signatures</atitle><jtitle>Geophysical research letters</jtitle><date>2021-03-28</date><risdate>2021</risdate><volume>48</volume><issue>6</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>We report on anomalously long duration (2 ms) count rate bursts following the impact of cosmic ray showers near a 7.62 cm x⊘7.62 cm LaBr3 scintillation detector at the High Altitude Water Cherenkov array in Mexico, previously described by Stenkin et al. (2001), and termed “neutron bursts.” The largest burst produced 198 counts within 2 ms in our LaBr3 detector. We simulate the neutron burst albedo flux (that is, secondary emissions from an extensive air shower core impacting the ground), and show that (1) the characteristic spectra and count rates are well explained by neutron absorption in the ground and (2) any cosmic ray secondary that produces neutrons, either through hadron inelastic collisions, or photoneutron production by gamma‐rays, produces the same characteristic spectra. This implies that other natural phenomena that produce downward beams of gamma‐rays, like Terrestrial gamma ray flashes, should produce a similar “neutron burst” signature from the photoneutron reactions occurring in the soil. Plain Language Summary When very large cosmic ray showers (CRS) impact the ground, neutrons are produced in the soil that will rattle around until they become captured by soil particles and release energetic gamma‐rays. This produces a slow explosion of particles emanating from the ground following a CRS impact, and is termed a 'neutron burst'. We present recent observations of neutron bursts from a hand held sized gamma‐ray detector at the High Altitude Water Cherenkov (HAWC) array in Mexico, that exhibit interesting spectral features (the presence of positron annihilation), and an interesting time structure (hundreds of counts within a few ms). Our simulations indicate that Terrestrial gamma‐ray flashes (TGFs, bursts of gamma‐rays associated with lightning) should also produce these neutron bursts. An implication of this work is that existing deployments of ground based TGF instruments, comprised of small gamma‐ray detectors, can additionally be used to observe signatures of large cosmic ray showers on clear days. Key Points We report on fairweather count rate bursts with 2 ms duration following the impact of a large cosmic ray shower near a small scintillation detector at HAWC Simulations show that the spectra and decay time can be produced by either hadronic interactions, or photoneutron reactions from gamma‐rays These results imply that downward TGFs could produce a similar delayed neutron signature in the soil near ground based detectors</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2020GL090033</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5998-4938</orcidid><orcidid>https://orcid.org/0000-0002-0542-5759</orcidid><orcidid>https://orcid.org/0000-0002-8553-3302</orcidid><orcidid>https://orcid.org/0000-0002-6159-7918</orcidid><orcidid>https://orcid.org/0000-0002-6072-249X</orcidid><orcidid>https://orcid.org/0000-0002-2002-4611</orcidid><orcidid>https://orcid.org/0000-0002-1689-3945</orcidid><orcidid>https://orcid.org/0000-0003-1059-8731</orcidid><orcidid>https://orcid.org/0000-0001-9643-4134</orcidid><orcidid>https://orcid.org/0000-0002-1114-2640</orcidid><orcidid>https://orcid.org/0000-0003-3207-105X</orcidid><orcidid>https://orcid.org/0000-0003-0681-7276</orcidid><orcidid>https://orcid.org/0000-0001-9231-8718</orcidid><orcidid>https://orcid.org/0000-0002-9524-2234</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2021-03, Vol.48 (6), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_2599309457
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Albedo
Altitude
Arrays
Bursts
Cosmic radiation
cosmic ray albedo
Cosmic ray showers
Cosmic rays
Detectors
Extensive air showers
Fair weather
Gamma ray flashes
Gamma rays
High altitude
High-altitude environments
Inelastic collisions
Instruments
Lightning
Natural phenomena
Neutron absorption
neutron bursts
neutron flash
Neutrons
Particle physics
Photonuclear reactions
Positron annihilation
Sensors
Signatures
Soil
Soil particles
Soils
Spectra
terrestrial gamma ray flashes
TGF
title Fair Weather Neutron Bursts From Photonuclear Reactions by Extensive Air Shower Core Interactions in the Ground and Implications for Terrestrial Gamma‐ray Flash Signatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A20%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fair%20Weather%20Neutron%20Bursts%20From%20Photonuclear%20Reactions%20by%20Extensive%20Air%20Shower%20Core%20Interactions%20in%20the%20Ground%20and%20Implications%20for%20Terrestrial%20Gamma%E2%80%90ray%20Flash%20Signatures&rft.jtitle=Geophysical%20research%20letters&rft.au=Bowers,%20Gregory%20S.&rft.date=2021-03-28&rft.volume=48&rft.issue=6&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2020GL090033&rft_dat=%3Cproquest_cross%3E2599309457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599309457&rft_id=info:pmid/&rfr_iscdi=true