Fair Weather Neutron Bursts From Photonuclear Reactions by Extensive Air Shower Core Interactions in the Ground and Implications for Terrestrial Gamma‐ray Flash Signatures
We report on anomalously long duration (2 ms) count rate bursts following the impact of cosmic ray showers near a 7.62 cm x⊘7.62 cm LaBr3 scintillation detector at the High Altitude Water Cherenkov array in Mexico, previously described by Stenkin et al. (2001), and termed “neutron bursts.” The large...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2021-03, Vol.48 (6), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Geophysical research letters |
container_volume | 48 |
creator | Bowers, Gregory S. Shao, Xuan‐Min Blaine, William Dingus, Brenda Smith, David M. Chaffin, Jeff Ortberg, John Rassoul, Hamid K. Ho, Cheng Nellen, Lukas Fraija, Nissim Alvarez, C. Arteaga‐Velázquez, J. C. Baghmanyan, V. Belmont‐Moreno, E. Caballero‐Mora, K. S. Carramiñana, A. Casanova, S. De la Fuente, E. González, M. M. Hueyotl‐Zahuantitla, F. Martinez, O. Matthews, J. A. Moreno, E. Newbold, M. Pérez‐Pérez, E. G. Torres, I. |
description | We report on anomalously long duration (2 ms) count rate bursts following the impact of cosmic ray showers near a 7.62 cm x⊘7.62 cm LaBr3 scintillation detector at the High Altitude Water Cherenkov array in Mexico, previously described by Stenkin et al. (2001), and termed “neutron bursts.” The largest burst produced 198 counts within 2 ms in our LaBr3 detector. We simulate the neutron burst albedo flux (that is, secondary emissions from an extensive air shower core impacting the ground), and show that (1) the characteristic spectra and count rates are well explained by neutron absorption in the ground and (2) any cosmic ray secondary that produces neutrons, either through hadron inelastic collisions, or photoneutron production by gamma‐rays, produces the same characteristic spectra. This implies that other natural phenomena that produce downward beams of gamma‐rays, like Terrestrial gamma ray flashes, should produce a similar “neutron burst” signature from the photoneutron reactions occurring in the soil.
Plain Language Summary
When very large cosmic ray showers (CRS) impact the ground, neutrons are produced in the soil that will rattle around until they become captured by soil particles and release energetic gamma‐rays. This produces a slow explosion of particles emanating from the ground following a CRS impact, and is termed a 'neutron burst'. We present recent observations of neutron bursts from a hand held sized gamma‐ray detector at the High Altitude Water Cherenkov (HAWC) array in Mexico, that exhibit interesting spectral features (the presence of positron annihilation), and an interesting time structure (hundreds of counts within a few ms). Our simulations indicate that Terrestrial gamma‐ray flashes (TGFs, bursts of gamma‐rays associated with lightning) should also produce these neutron bursts. An implication of this work is that existing deployments of ground based TGF instruments, comprised of small gamma‐ray detectors, can additionally be used to observe signatures of large cosmic ray showers on clear days.
Key Points
We report on fairweather count rate bursts with 2 ms duration following the impact of a large cosmic ray shower near a small scintillation detector at HAWC
Simulations show that the spectra and decay time can be produced by either hadronic interactions, or photoneutron reactions from gamma‐rays
These results imply that downward TGFs could produce a similar delayed neutron signature in the soil near ground based detectors |
doi_str_mv | 10.1029/2020GL090033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599309457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599309457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3720-de2436c9876971cb36b49c6e7810c132d89dc4bb1cfd4dc679e2ea6791dfcccf3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhq0KpC6lNx7AEtcujO00WR_LqhtWWgFqi3qMHGfSdZXY27HTsjcegRfhpXgSjLZInDiM_pHm0z-j-Rl7I-CdAKnfS5BQb0ADKHXEZkIXxXwBUL1gMwCde1mVx-xVjPeQEVBixn6ujCN-iyZtkfgnnBIFzz9MFFPkKwoj_7INKfjJDmiIX6GxyQUfebvnl98S-ugekV9kj-tteMoWy0DI1z4h_SWd59mc1xQm33GTaz3uBmfNYdwH4jdIhDGRMwOvzTiaX99_kNnz1WDill-7O2_SlInX7GVvhoinz3rCvq4ub5Yf55vP9Xp5sZlbVUmYdygLVVq9qEpdCduqsi20LbFaCLBCyW6hO1u0rbB9V3S2rDRKNFlE11tre3XC3h58dxQepnxZcx8m8nllI8-1VvmZ51Wmzg6UpRAjYd_syI2G9o2A5k8gzb-BZFwe8Cc34P6_bFNfbUoJJajf6U-QlQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599309457</pqid></control><display><type>article</type><title>Fair Weather Neutron Bursts From Photonuclear Reactions by Extensive Air Shower Core Interactions in the Ground and Implications for Terrestrial Gamma‐ray Flash Signatures</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Bowers, Gregory S. ; Shao, Xuan‐Min ; Blaine, William ; Dingus, Brenda ; Smith, David M. ; Chaffin, Jeff ; Ortberg, John ; Rassoul, Hamid K. ; Ho, Cheng ; Nellen, Lukas ; Fraija, Nissim ; Alvarez, C. ; Arteaga‐Velázquez, J. C. ; Baghmanyan, V. ; Belmont‐Moreno, E. ; Caballero‐Mora, K. S. ; Carramiñana, A. ; Casanova, S. ; De la Fuente, E. ; González, M. M. ; Hueyotl‐Zahuantitla, F. ; Martinez, O. ; Matthews, J. A. ; Moreno, E. ; Newbold, M. ; Pérez‐Pérez, E. G. ; Torres, I.</creator><creatorcontrib>Bowers, Gregory S. ; Shao, Xuan‐Min ; Blaine, William ; Dingus, Brenda ; Smith, David M. ; Chaffin, Jeff ; Ortberg, John ; Rassoul, Hamid K. ; Ho, Cheng ; Nellen, Lukas ; Fraija, Nissim ; Alvarez, C. ; Arteaga‐Velázquez, J. C. ; Baghmanyan, V. ; Belmont‐Moreno, E. ; Caballero‐Mora, K. S. ; Carramiñana, A. ; Casanova, S. ; De la Fuente, E. ; González, M. M. ; Hueyotl‐Zahuantitla, F. ; Martinez, O. ; Matthews, J. A. ; Moreno, E. ; Newbold, M. ; Pérez‐Pérez, E. G. ; Torres, I.</creatorcontrib><description>We report on anomalously long duration (2 ms) count rate bursts following the impact of cosmic ray showers near a 7.62 cm x⊘7.62 cm LaBr3 scintillation detector at the High Altitude Water Cherenkov array in Mexico, previously described by Stenkin et al. (2001), and termed “neutron bursts.” The largest burst produced 198 counts within 2 ms in our LaBr3 detector. We simulate the neutron burst albedo flux (that is, secondary emissions from an extensive air shower core impacting the ground), and show that (1) the characteristic spectra and count rates are well explained by neutron absorption in the ground and (2) any cosmic ray secondary that produces neutrons, either through hadron inelastic collisions, or photoneutron production by gamma‐rays, produces the same characteristic spectra. This implies that other natural phenomena that produce downward beams of gamma‐rays, like Terrestrial gamma ray flashes, should produce a similar “neutron burst” signature from the photoneutron reactions occurring in the soil.
Plain Language Summary
When very large cosmic ray showers (CRS) impact the ground, neutrons are produced in the soil that will rattle around until they become captured by soil particles and release energetic gamma‐rays. This produces a slow explosion of particles emanating from the ground following a CRS impact, and is termed a 'neutron burst'. We present recent observations of neutron bursts from a hand held sized gamma‐ray detector at the High Altitude Water Cherenkov (HAWC) array in Mexico, that exhibit interesting spectral features (the presence of positron annihilation), and an interesting time structure (hundreds of counts within a few ms). Our simulations indicate that Terrestrial gamma‐ray flashes (TGFs, bursts of gamma‐rays associated with lightning) should also produce these neutron bursts. An implication of this work is that existing deployments of ground based TGF instruments, comprised of small gamma‐ray detectors, can additionally be used to observe signatures of large cosmic ray showers on clear days.
Key Points
We report on fairweather count rate bursts with 2 ms duration following the impact of a large cosmic ray shower near a small scintillation detector at HAWC
Simulations show that the spectra and decay time can be produced by either hadronic interactions, or photoneutron reactions from gamma‐rays
These results imply that downward TGFs could produce a similar delayed neutron signature in the soil near ground based detectors</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2020GL090033</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Albedo ; Altitude ; Arrays ; Bursts ; Cosmic radiation ; cosmic ray albedo ; Cosmic ray showers ; Cosmic rays ; Detectors ; Extensive air showers ; Fair weather ; Gamma ray flashes ; Gamma rays ; High altitude ; High-altitude environments ; Inelastic collisions ; Instruments ; Lightning ; Natural phenomena ; Neutron absorption ; neutron bursts ; neutron flash ; Neutrons ; Particle physics ; Photonuclear reactions ; Positron annihilation ; Sensors ; Signatures ; Soil ; Soil particles ; Soils ; Spectra ; terrestrial gamma ray flashes ; TGF</subject><ispartof>Geophysical research letters, 2021-03, Vol.48 (6), p.n/a</ispartof><rights>2021. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3720-de2436c9876971cb36b49c6e7810c132d89dc4bb1cfd4dc679e2ea6791dfcccf3</citedby><cites>FETCH-LOGICAL-c3720-de2436c9876971cb36b49c6e7810c132d89dc4bb1cfd4dc679e2ea6791dfcccf3</cites><orcidid>0000-0001-5998-4938 ; 0000-0002-0542-5759 ; 0000-0002-8553-3302 ; 0000-0002-6159-7918 ; 0000-0002-6072-249X ; 0000-0002-2002-4611 ; 0000-0002-1689-3945 ; 0000-0003-1059-8731 ; 0000-0001-9643-4134 ; 0000-0002-1114-2640 ; 0000-0003-3207-105X ; 0000-0003-0681-7276 ; 0000-0001-9231-8718 ; 0000-0002-9524-2234</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2020GL090033$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2020GL090033$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Bowers, Gregory S.</creatorcontrib><creatorcontrib>Shao, Xuan‐Min</creatorcontrib><creatorcontrib>Blaine, William</creatorcontrib><creatorcontrib>Dingus, Brenda</creatorcontrib><creatorcontrib>Smith, David M.</creatorcontrib><creatorcontrib>Chaffin, Jeff</creatorcontrib><creatorcontrib>Ortberg, John</creatorcontrib><creatorcontrib>Rassoul, Hamid K.</creatorcontrib><creatorcontrib>Ho, Cheng</creatorcontrib><creatorcontrib>Nellen, Lukas</creatorcontrib><creatorcontrib>Fraija, Nissim</creatorcontrib><creatorcontrib>Alvarez, C.</creatorcontrib><creatorcontrib>Arteaga‐Velázquez, J. C.</creatorcontrib><creatorcontrib>Baghmanyan, V.</creatorcontrib><creatorcontrib>Belmont‐Moreno, E.</creatorcontrib><creatorcontrib>Caballero‐Mora, K. S.</creatorcontrib><creatorcontrib>Carramiñana, A.</creatorcontrib><creatorcontrib>Casanova, S.</creatorcontrib><creatorcontrib>De la Fuente, E.</creatorcontrib><creatorcontrib>González, M. M.</creatorcontrib><creatorcontrib>Hueyotl‐Zahuantitla, F.</creatorcontrib><creatorcontrib>Martinez, O.</creatorcontrib><creatorcontrib>Matthews, J. A.</creatorcontrib><creatorcontrib>Moreno, E.</creatorcontrib><creatorcontrib>Newbold, M.</creatorcontrib><creatorcontrib>Pérez‐Pérez, E. G.</creatorcontrib><creatorcontrib>Torres, I.</creatorcontrib><title>Fair Weather Neutron Bursts From Photonuclear Reactions by Extensive Air Shower Core Interactions in the Ground and Implications for Terrestrial Gamma‐ray Flash Signatures</title><title>Geophysical research letters</title><description>We report on anomalously long duration (2 ms) count rate bursts following the impact of cosmic ray showers near a 7.62 cm x⊘7.62 cm LaBr3 scintillation detector at the High Altitude Water Cherenkov array in Mexico, previously described by Stenkin et al. (2001), and termed “neutron bursts.” The largest burst produced 198 counts within 2 ms in our LaBr3 detector. We simulate the neutron burst albedo flux (that is, secondary emissions from an extensive air shower core impacting the ground), and show that (1) the characteristic spectra and count rates are well explained by neutron absorption in the ground and (2) any cosmic ray secondary that produces neutrons, either through hadron inelastic collisions, or photoneutron production by gamma‐rays, produces the same characteristic spectra. This implies that other natural phenomena that produce downward beams of gamma‐rays, like Terrestrial gamma ray flashes, should produce a similar “neutron burst” signature from the photoneutron reactions occurring in the soil.
Plain Language Summary
When very large cosmic ray showers (CRS) impact the ground, neutrons are produced in the soil that will rattle around until they become captured by soil particles and release energetic gamma‐rays. This produces a slow explosion of particles emanating from the ground following a CRS impact, and is termed a 'neutron burst'. We present recent observations of neutron bursts from a hand held sized gamma‐ray detector at the High Altitude Water Cherenkov (HAWC) array in Mexico, that exhibit interesting spectral features (the presence of positron annihilation), and an interesting time structure (hundreds of counts within a few ms). Our simulations indicate that Terrestrial gamma‐ray flashes (TGFs, bursts of gamma‐rays associated with lightning) should also produce these neutron bursts. An implication of this work is that existing deployments of ground based TGF instruments, comprised of small gamma‐ray detectors, can additionally be used to observe signatures of large cosmic ray showers on clear days.
Key Points
We report on fairweather count rate bursts with 2 ms duration following the impact of a large cosmic ray shower near a small scintillation detector at HAWC
Simulations show that the spectra and decay time can be produced by either hadronic interactions, or photoneutron reactions from gamma‐rays
These results imply that downward TGFs could produce a similar delayed neutron signature in the soil near ground based detectors</description><subject>Albedo</subject><subject>Altitude</subject><subject>Arrays</subject><subject>Bursts</subject><subject>Cosmic radiation</subject><subject>cosmic ray albedo</subject><subject>Cosmic ray showers</subject><subject>Cosmic rays</subject><subject>Detectors</subject><subject>Extensive air showers</subject><subject>Fair weather</subject><subject>Gamma ray flashes</subject><subject>Gamma rays</subject><subject>High altitude</subject><subject>High-altitude environments</subject><subject>Inelastic collisions</subject><subject>Instruments</subject><subject>Lightning</subject><subject>Natural phenomena</subject><subject>Neutron absorption</subject><subject>neutron bursts</subject><subject>neutron flash</subject><subject>Neutrons</subject><subject>Particle physics</subject><subject>Photonuclear reactions</subject><subject>Positron annihilation</subject><subject>Sensors</subject><subject>Signatures</subject><subject>Soil</subject><subject>Soil particles</subject><subject>Soils</subject><subject>Spectra</subject><subject>terrestrial gamma ray flashes</subject><subject>TGF</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhq0KpC6lNx7AEtcujO00WR_LqhtWWgFqi3qMHGfSdZXY27HTsjcegRfhpXgSjLZInDiM_pHm0z-j-Rl7I-CdAKnfS5BQb0ADKHXEZkIXxXwBUL1gMwCde1mVx-xVjPeQEVBixn6ujCN-iyZtkfgnnBIFzz9MFFPkKwoj_7INKfjJDmiIX6GxyQUfebvnl98S-ugekV9kj-tteMoWy0DI1z4h_SWd59mc1xQm33GTaz3uBmfNYdwH4jdIhDGRMwOvzTiaX99_kNnz1WDill-7O2_SlInX7GVvhoinz3rCvq4ub5Yf55vP9Xp5sZlbVUmYdygLVVq9qEpdCduqsi20LbFaCLBCyW6hO1u0rbB9V3S2rDRKNFlE11tre3XC3h58dxQepnxZcx8m8nllI8-1VvmZ51Wmzg6UpRAjYd_syI2G9o2A5k8gzb-BZFwe8Cc34P6_bFNfbUoJJajf6U-QlQ</recordid><startdate>20210328</startdate><enddate>20210328</enddate><creator>Bowers, Gregory S.</creator><creator>Shao, Xuan‐Min</creator><creator>Blaine, William</creator><creator>Dingus, Brenda</creator><creator>Smith, David M.</creator><creator>Chaffin, Jeff</creator><creator>Ortberg, John</creator><creator>Rassoul, Hamid K.</creator><creator>Ho, Cheng</creator><creator>Nellen, Lukas</creator><creator>Fraija, Nissim</creator><creator>Alvarez, C.</creator><creator>Arteaga‐Velázquez, J. C.</creator><creator>Baghmanyan, V.</creator><creator>Belmont‐Moreno, E.</creator><creator>Caballero‐Mora, K. S.</creator><creator>Carramiñana, A.</creator><creator>Casanova, S.</creator><creator>De la Fuente, E.</creator><creator>González, M. M.</creator><creator>Hueyotl‐Zahuantitla, F.</creator><creator>Martinez, O.</creator><creator>Matthews, J. A.</creator><creator>Moreno, E.</creator><creator>Newbold, M.</creator><creator>Pérez‐Pérez, E. G.</creator><creator>Torres, I.</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5998-4938</orcidid><orcidid>https://orcid.org/0000-0002-0542-5759</orcidid><orcidid>https://orcid.org/0000-0002-8553-3302</orcidid><orcidid>https://orcid.org/0000-0002-6159-7918</orcidid><orcidid>https://orcid.org/0000-0002-6072-249X</orcidid><orcidid>https://orcid.org/0000-0002-2002-4611</orcidid><orcidid>https://orcid.org/0000-0002-1689-3945</orcidid><orcidid>https://orcid.org/0000-0003-1059-8731</orcidid><orcidid>https://orcid.org/0000-0001-9643-4134</orcidid><orcidid>https://orcid.org/0000-0002-1114-2640</orcidid><orcidid>https://orcid.org/0000-0003-3207-105X</orcidid><orcidid>https://orcid.org/0000-0003-0681-7276</orcidid><orcidid>https://orcid.org/0000-0001-9231-8718</orcidid><orcidid>https://orcid.org/0000-0002-9524-2234</orcidid></search><sort><creationdate>20210328</creationdate><title>Fair Weather Neutron Bursts From Photonuclear Reactions by Extensive Air Shower Core Interactions in the Ground and Implications for Terrestrial Gamma‐ray Flash Signatures</title><author>Bowers, Gregory S. ; Shao, Xuan‐Min ; Blaine, William ; Dingus, Brenda ; Smith, David M. ; Chaffin, Jeff ; Ortberg, John ; Rassoul, Hamid K. ; Ho, Cheng ; Nellen, Lukas ; Fraija, Nissim ; Alvarez, C. ; Arteaga‐Velázquez, J. C. ; Baghmanyan, V. ; Belmont‐Moreno, E. ; Caballero‐Mora, K. S. ; Carramiñana, A. ; Casanova, S. ; De la Fuente, E. ; González, M. M. ; Hueyotl‐Zahuantitla, F. ; Martinez, O. ; Matthews, J. A. ; Moreno, E. ; Newbold, M. ; Pérez‐Pérez, E. G. ; Torres, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3720-de2436c9876971cb36b49c6e7810c132d89dc4bb1cfd4dc679e2ea6791dfcccf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Albedo</topic><topic>Altitude</topic><topic>Arrays</topic><topic>Bursts</topic><topic>Cosmic radiation</topic><topic>cosmic ray albedo</topic><topic>Cosmic ray showers</topic><topic>Cosmic rays</topic><topic>Detectors</topic><topic>Extensive air showers</topic><topic>Fair weather</topic><topic>Gamma ray flashes</topic><topic>Gamma rays</topic><topic>High altitude</topic><topic>High-altitude environments</topic><topic>Inelastic collisions</topic><topic>Instruments</topic><topic>Lightning</topic><topic>Natural phenomena</topic><topic>Neutron absorption</topic><topic>neutron bursts</topic><topic>neutron flash</topic><topic>Neutrons</topic><topic>Particle physics</topic><topic>Photonuclear reactions</topic><topic>Positron annihilation</topic><topic>Sensors</topic><topic>Signatures</topic><topic>Soil</topic><topic>Soil particles</topic><topic>Soils</topic><topic>Spectra</topic><topic>terrestrial gamma ray flashes</topic><topic>TGF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bowers, Gregory S.</creatorcontrib><creatorcontrib>Shao, Xuan‐Min</creatorcontrib><creatorcontrib>Blaine, William</creatorcontrib><creatorcontrib>Dingus, Brenda</creatorcontrib><creatorcontrib>Smith, David M.</creatorcontrib><creatorcontrib>Chaffin, Jeff</creatorcontrib><creatorcontrib>Ortberg, John</creatorcontrib><creatorcontrib>Rassoul, Hamid K.</creatorcontrib><creatorcontrib>Ho, Cheng</creatorcontrib><creatorcontrib>Nellen, Lukas</creatorcontrib><creatorcontrib>Fraija, Nissim</creatorcontrib><creatorcontrib>Alvarez, C.</creatorcontrib><creatorcontrib>Arteaga‐Velázquez, J. C.</creatorcontrib><creatorcontrib>Baghmanyan, V.</creatorcontrib><creatorcontrib>Belmont‐Moreno, E.</creatorcontrib><creatorcontrib>Caballero‐Mora, K. S.</creatorcontrib><creatorcontrib>Carramiñana, A.</creatorcontrib><creatorcontrib>Casanova, S.</creatorcontrib><creatorcontrib>De la Fuente, E.</creatorcontrib><creatorcontrib>González, M. M.</creatorcontrib><creatorcontrib>Hueyotl‐Zahuantitla, F.</creatorcontrib><creatorcontrib>Martinez, O.</creatorcontrib><creatorcontrib>Matthews, J. A.</creatorcontrib><creatorcontrib>Moreno, E.</creatorcontrib><creatorcontrib>Newbold, M.</creatorcontrib><creatorcontrib>Pérez‐Pérez, E. G.</creatorcontrib><creatorcontrib>Torres, I.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bowers, Gregory S.</au><au>Shao, Xuan‐Min</au><au>Blaine, William</au><au>Dingus, Brenda</au><au>Smith, David M.</au><au>Chaffin, Jeff</au><au>Ortberg, John</au><au>Rassoul, Hamid K.</au><au>Ho, Cheng</au><au>Nellen, Lukas</au><au>Fraija, Nissim</au><au>Alvarez, C.</au><au>Arteaga‐Velázquez, J. C.</au><au>Baghmanyan, V.</au><au>Belmont‐Moreno, E.</au><au>Caballero‐Mora, K. S.</au><au>Carramiñana, A.</au><au>Casanova, S.</au><au>De la Fuente, E.</au><au>González, M. M.</au><au>Hueyotl‐Zahuantitla, F.</au><au>Martinez, O.</au><au>Matthews, J. A.</au><au>Moreno, E.</au><au>Newbold, M.</au><au>Pérez‐Pérez, E. G.</au><au>Torres, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fair Weather Neutron Bursts From Photonuclear Reactions by Extensive Air Shower Core Interactions in the Ground and Implications for Terrestrial Gamma‐ray Flash Signatures</atitle><jtitle>Geophysical research letters</jtitle><date>2021-03-28</date><risdate>2021</risdate><volume>48</volume><issue>6</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>We report on anomalously long duration (2 ms) count rate bursts following the impact of cosmic ray showers near a 7.62 cm x⊘7.62 cm LaBr3 scintillation detector at the High Altitude Water Cherenkov array in Mexico, previously described by Stenkin et al. (2001), and termed “neutron bursts.” The largest burst produced 198 counts within 2 ms in our LaBr3 detector. We simulate the neutron burst albedo flux (that is, secondary emissions from an extensive air shower core impacting the ground), and show that (1) the characteristic spectra and count rates are well explained by neutron absorption in the ground and (2) any cosmic ray secondary that produces neutrons, either through hadron inelastic collisions, or photoneutron production by gamma‐rays, produces the same characteristic spectra. This implies that other natural phenomena that produce downward beams of gamma‐rays, like Terrestrial gamma ray flashes, should produce a similar “neutron burst” signature from the photoneutron reactions occurring in the soil.
Plain Language Summary
When very large cosmic ray showers (CRS) impact the ground, neutrons are produced in the soil that will rattle around until they become captured by soil particles and release energetic gamma‐rays. This produces a slow explosion of particles emanating from the ground following a CRS impact, and is termed a 'neutron burst'. We present recent observations of neutron bursts from a hand held sized gamma‐ray detector at the High Altitude Water Cherenkov (HAWC) array in Mexico, that exhibit interesting spectral features (the presence of positron annihilation), and an interesting time structure (hundreds of counts within a few ms). Our simulations indicate that Terrestrial gamma‐ray flashes (TGFs, bursts of gamma‐rays associated with lightning) should also produce these neutron bursts. An implication of this work is that existing deployments of ground based TGF instruments, comprised of small gamma‐ray detectors, can additionally be used to observe signatures of large cosmic ray showers on clear days.
Key Points
We report on fairweather count rate bursts with 2 ms duration following the impact of a large cosmic ray shower near a small scintillation detector at HAWC
Simulations show that the spectra and decay time can be produced by either hadronic interactions, or photoneutron reactions from gamma‐rays
These results imply that downward TGFs could produce a similar delayed neutron signature in the soil near ground based detectors</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2020GL090033</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5998-4938</orcidid><orcidid>https://orcid.org/0000-0002-0542-5759</orcidid><orcidid>https://orcid.org/0000-0002-8553-3302</orcidid><orcidid>https://orcid.org/0000-0002-6159-7918</orcidid><orcidid>https://orcid.org/0000-0002-6072-249X</orcidid><orcidid>https://orcid.org/0000-0002-2002-4611</orcidid><orcidid>https://orcid.org/0000-0002-1689-3945</orcidid><orcidid>https://orcid.org/0000-0003-1059-8731</orcidid><orcidid>https://orcid.org/0000-0001-9643-4134</orcidid><orcidid>https://orcid.org/0000-0002-1114-2640</orcidid><orcidid>https://orcid.org/0000-0003-3207-105X</orcidid><orcidid>https://orcid.org/0000-0003-0681-7276</orcidid><orcidid>https://orcid.org/0000-0001-9231-8718</orcidid><orcidid>https://orcid.org/0000-0002-9524-2234</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2021-03, Vol.48 (6), p.n/a |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_journals_2599309457 |
source | Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Albedo Altitude Arrays Bursts Cosmic radiation cosmic ray albedo Cosmic ray showers Cosmic rays Detectors Extensive air showers Fair weather Gamma ray flashes Gamma rays High altitude High-altitude environments Inelastic collisions Instruments Lightning Natural phenomena Neutron absorption neutron bursts neutron flash Neutrons Particle physics Photonuclear reactions Positron annihilation Sensors Signatures Soil Soil particles Soils Spectra terrestrial gamma ray flashes TGF |
title | Fair Weather Neutron Bursts From Photonuclear Reactions by Extensive Air Shower Core Interactions in the Ground and Implications for Terrestrial Gamma‐ray Flash Signatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A20%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fair%20Weather%20Neutron%20Bursts%20From%20Photonuclear%20Reactions%20by%20Extensive%20Air%20Shower%20Core%20Interactions%20in%20the%20Ground%20and%20Implications%20for%20Terrestrial%20Gamma%E2%80%90ray%20Flash%20Signatures&rft.jtitle=Geophysical%20research%20letters&rft.au=Bowers,%20Gregory%20S.&rft.date=2021-03-28&rft.volume=48&rft.issue=6&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2020GL090033&rft_dat=%3Cproquest_cross%3E2599309457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599309457&rft_id=info:pmid/&rfr_iscdi=true |