Collaborative Social-Aware and QoE-Driven Video Caching and Adaptation in Edge Network
With the emerging demand for high-definition videos in recent years, Multi-access Edge Computing (MEC) has become a promising solution to leverage Quality of Experience (QoE) of users in the 5G mobile network, which provides computing and cache resource at network edges to serve end users with less...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on multimedia 2021, Vol.23, p.4311-4325 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4325 |
---|---|
container_issue | |
container_start_page | 4311 |
container_title | IEEE transactions on multimedia |
container_volume | 23 |
creator | Chiang, Yao Hsu, Chih-Ho Wei, Hung-Yu |
description | With the emerging demand for high-definition videos in recent years, Multi-access Edge Computing (MEC) has become a promising solution to leverage Quality of Experience (QoE) of users in the 5G mobile network, which provides computing and cache resource at network edges to serve end users with less latency. Also, since mobile users tend to be influenced by the trends in social media, the performance of video caching will become more effective if we can extract the hidden information from interaction among them. In this paper, we propose a novel Collaborative Social-aware QoE-driven video Caching and Adaption (CSQCA) framework. Specifically, we first design a 2-tier MEC collaborative video caching architecture, which partially caches popular videos among multiple edge servers. Second, we propose a social-aware proactive cache strategy, which embeds interactions of users and video dissemination process in social networks into the caching mechanism. Third, a QoE-driven video adaptation algorithm is presented to dynamically transcode the cached videos into appropriate resolution on edge server for each request. Finally, we conduct our simulation based on real-world datasets. The simulation results show that the proposed CSQCA framework outperforms traditional cache algorithms, in terms of the average hit ratio and QoE. |
doi_str_mv | 10.1109/TMM.2020.3040532 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2599215707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9271894</ieee_id><sourcerecordid>2599215707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-da73ee0fa4d68c7b3d927ebe0295915a82df6c6e173c15bd47d5063aba9715603</originalsourceid><addsrcrecordid>eNo9kM1PAjEQxRujiYjeTbw08bw4bbdbeiQrfiSgMSLXprsdcHHdYneR-N9bhHiaSd578_Ej5JLBgDHQN7PpdMCBw0BAClLwI9JjOmUJgFLHsZccEs0ZnJKztl0BsFSC6pF57uvaFj7YrvpG-urLytbJaGsDUts4-uLHyW2IUkPnlUNPc1u-V83yTxw5u-5i0De0aujYLZE-Ybf14eOcnCxs3eLFofbJ2914lj8kk-f7x3w0SUquWZc4qwQiLGzqsmGpCuE0V1ggcC01k3bI3SIrM2RKlEwWLlVOQiZsYbViMgPRJ9f7uevgvzbYdmblN6GJKw2XOv4rFajogr2rDL5tAy7MOlSfNvwYBmZHz0R6ZkfPHOjFyNU-UiHivz1ex4Y6Fb8Y5Gn2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599215707</pqid></control><display><type>article</type><title>Collaborative Social-Aware and QoE-Driven Video Caching and Adaptation in Edge Network</title><source>IEEE Electronic Library (IEL)</source><creator>Chiang, Yao ; Hsu, Chih-Ho ; Wei, Hung-Yu</creator><creatorcontrib>Chiang, Yao ; Hsu, Chih-Ho ; Wei, Hung-Yu</creatorcontrib><description>With the emerging demand for high-definition videos in recent years, Multi-access Edge Computing (MEC) has become a promising solution to leverage Quality of Experience (QoE) of users in the 5G mobile network, which provides computing and cache resource at network edges to serve end users with less latency. Also, since mobile users tend to be influenced by the trends in social media, the performance of video caching will become more effective if we can extract the hidden information from interaction among them. In this paper, we propose a novel Collaborative Social-aware QoE-driven video Caching and Adaption (CSQCA) framework. Specifically, we first design a 2-tier MEC collaborative video caching architecture, which partially caches popular videos among multiple edge servers. Second, we propose a social-aware proactive cache strategy, which embeds interactions of users and video dissemination process in social networks into the caching mechanism. Third, a QoE-driven video adaptation algorithm is presented to dynamically transcode the cached videos into appropriate resolution on edge server for each request. Finally, we conduct our simulation based on real-world datasets. The simulation results show that the proposed CSQCA framework outperforms traditional cache algorithms, in terms of the average hit ratio and QoE.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2020.3040532</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; Adaptation ; Algorithms ; Caching ; Collaboration ; collaborative caching ; Edge computing ; End users ; High definition ; Mobile computing ; Multi-access edge computingg ; Network latency ; Quality of experience ; Servers ; social network ; Social networking (online) ; Social networks ; Streaming media ; Transcoding ; User experience ; Video ; video adaptation</subject><ispartof>IEEE transactions on multimedia, 2021, Vol.23, p.4311-4325</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-da73ee0fa4d68c7b3d927ebe0295915a82df6c6e173c15bd47d5063aba9715603</citedby><cites>FETCH-LOGICAL-c291t-da73ee0fa4d68c7b3d927ebe0295915a82df6c6e173c15bd47d5063aba9715603</cites><orcidid>0000-0002-0392-6525 ; 0000-0002-3116-306X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9271894$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9271894$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chiang, Yao</creatorcontrib><creatorcontrib>Hsu, Chih-Ho</creatorcontrib><creatorcontrib>Wei, Hung-Yu</creatorcontrib><title>Collaborative Social-Aware and QoE-Driven Video Caching and Adaptation in Edge Network</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>With the emerging demand for high-definition videos in recent years, Multi-access Edge Computing (MEC) has become a promising solution to leverage Quality of Experience (QoE) of users in the 5G mobile network, which provides computing and cache resource at network edges to serve end users with less latency. Also, since mobile users tend to be influenced by the trends in social media, the performance of video caching will become more effective if we can extract the hidden information from interaction among them. In this paper, we propose a novel Collaborative Social-aware QoE-driven video Caching and Adaption (CSQCA) framework. Specifically, we first design a 2-tier MEC collaborative video caching architecture, which partially caches popular videos among multiple edge servers. Second, we propose a social-aware proactive cache strategy, which embeds interactions of users and video dissemination process in social networks into the caching mechanism. Third, a QoE-driven video adaptation algorithm is presented to dynamically transcode the cached videos into appropriate resolution on edge server for each request. Finally, we conduct our simulation based on real-world datasets. The simulation results show that the proposed CSQCA framework outperforms traditional cache algorithms, in terms of the average hit ratio and QoE.</description><subject>5G mobile communication</subject><subject>Adaptation</subject><subject>Algorithms</subject><subject>Caching</subject><subject>Collaboration</subject><subject>collaborative caching</subject><subject>Edge computing</subject><subject>End users</subject><subject>High definition</subject><subject>Mobile computing</subject><subject>Multi-access edge computingg</subject><subject>Network latency</subject><subject>Quality of experience</subject><subject>Servers</subject><subject>social network</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Streaming media</subject><subject>Transcoding</subject><subject>User experience</subject><subject>Video</subject><subject>video adaptation</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1PAjEQxRujiYjeTbw08bw4bbdbeiQrfiSgMSLXprsdcHHdYneR-N9bhHiaSd578_Ej5JLBgDHQN7PpdMCBw0BAClLwI9JjOmUJgFLHsZccEs0ZnJKztl0BsFSC6pF57uvaFj7YrvpG-urLytbJaGsDUts4-uLHyW2IUkPnlUNPc1u-V83yTxw5u-5i0De0aujYLZE-Ybf14eOcnCxs3eLFofbJ2914lj8kk-f7x3w0SUquWZc4qwQiLGzqsmGpCuE0V1ggcC01k3bI3SIrM2RKlEwWLlVOQiZsYbViMgPRJ9f7uevgvzbYdmblN6GJKw2XOv4rFajogr2rDL5tAy7MOlSfNvwYBmZHz0R6ZkfPHOjFyNU-UiHivz1ex4Y6Fb8Y5Gn2</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Chiang, Yao</creator><creator>Hsu, Chih-Ho</creator><creator>Wei, Hung-Yu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0392-6525</orcidid><orcidid>https://orcid.org/0000-0002-3116-306X</orcidid></search><sort><creationdate>2021</creationdate><title>Collaborative Social-Aware and QoE-Driven Video Caching and Adaptation in Edge Network</title><author>Chiang, Yao ; Hsu, Chih-Ho ; Wei, Hung-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-da73ee0fa4d68c7b3d927ebe0295915a82df6c6e173c15bd47d5063aba9715603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>5G mobile communication</topic><topic>Adaptation</topic><topic>Algorithms</topic><topic>Caching</topic><topic>Collaboration</topic><topic>collaborative caching</topic><topic>Edge computing</topic><topic>End users</topic><topic>High definition</topic><topic>Mobile computing</topic><topic>Multi-access edge computingg</topic><topic>Network latency</topic><topic>Quality of experience</topic><topic>Servers</topic><topic>social network</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Streaming media</topic><topic>Transcoding</topic><topic>User experience</topic><topic>Video</topic><topic>video adaptation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiang, Yao</creatorcontrib><creatorcontrib>Hsu, Chih-Ho</creatorcontrib><creatorcontrib>Wei, Hung-Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chiang, Yao</au><au>Hsu, Chih-Ho</au><au>Wei, Hung-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative Social-Aware and QoE-Driven Video Caching and Adaptation in Edge Network</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2021</date><risdate>2021</risdate><volume>23</volume><spage>4311</spage><epage>4325</epage><pages>4311-4325</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>With the emerging demand for high-definition videos in recent years, Multi-access Edge Computing (MEC) has become a promising solution to leverage Quality of Experience (QoE) of users in the 5G mobile network, which provides computing and cache resource at network edges to serve end users with less latency. Also, since mobile users tend to be influenced by the trends in social media, the performance of video caching will become more effective if we can extract the hidden information from interaction among them. In this paper, we propose a novel Collaborative Social-aware QoE-driven video Caching and Adaption (CSQCA) framework. Specifically, we first design a 2-tier MEC collaborative video caching architecture, which partially caches popular videos among multiple edge servers. Second, we propose a social-aware proactive cache strategy, which embeds interactions of users and video dissemination process in social networks into the caching mechanism. Third, a QoE-driven video adaptation algorithm is presented to dynamically transcode the cached videos into appropriate resolution on edge server for each request. Finally, we conduct our simulation based on real-world datasets. The simulation results show that the proposed CSQCA framework outperforms traditional cache algorithms, in terms of the average hit ratio and QoE.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2020.3040532</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0392-6525</orcidid><orcidid>https://orcid.org/0000-0002-3116-306X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1520-9210 |
ispartof | IEEE transactions on multimedia, 2021, Vol.23, p.4311-4325 |
issn | 1520-9210 1941-0077 |
language | eng |
recordid | cdi_proquest_journals_2599215707 |
source | IEEE Electronic Library (IEL) |
subjects | 5G mobile communication Adaptation Algorithms Caching Collaboration collaborative caching Edge computing End users High definition Mobile computing Multi-access edge computingg Network latency Quality of experience Servers social network Social networking (online) Social networks Streaming media Transcoding User experience Video video adaptation |
title | Collaborative Social-Aware and QoE-Driven Video Caching and Adaptation in Edge Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A30%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20Social-Aware%20and%20QoE-Driven%20Video%20Caching%20and%20Adaptation%20in%20Edge%20Network&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Chiang,%20Yao&rft.date=2021&rft.volume=23&rft.spage=4311&rft.epage=4325&rft.pages=4311-4325&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2020.3040532&rft_dat=%3Cproquest_RIE%3E2599215707%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599215707&rft_id=info:pmid/&rft_ieee_id=9271894&rfr_iscdi=true |