Collaborative Social-Aware and QoE-Driven Video Caching and Adaptation in Edge Network

With the emerging demand for high-definition videos in recent years, Multi-access Edge Computing (MEC) has become a promising solution to leverage Quality of Experience (QoE) of users in the 5G mobile network, which provides computing and cache resource at network edges to serve end users with less...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on multimedia 2021, Vol.23, p.4311-4325
Hauptverfasser: Chiang, Yao, Hsu, Chih-Ho, Wei, Hung-Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4325
container_issue
container_start_page 4311
container_title IEEE transactions on multimedia
container_volume 23
creator Chiang, Yao
Hsu, Chih-Ho
Wei, Hung-Yu
description With the emerging demand for high-definition videos in recent years, Multi-access Edge Computing (MEC) has become a promising solution to leverage Quality of Experience (QoE) of users in the 5G mobile network, which provides computing and cache resource at network edges to serve end users with less latency. Also, since mobile users tend to be influenced by the trends in social media, the performance of video caching will become more effective if we can extract the hidden information from interaction among them. In this paper, we propose a novel Collaborative Social-aware QoE-driven video Caching and Adaption (CSQCA) framework. Specifically, we first design a 2-tier MEC collaborative video caching architecture, which partially caches popular videos among multiple edge servers. Second, we propose a social-aware proactive cache strategy, which embeds interactions of users and video dissemination process in social networks into the caching mechanism. Third, a QoE-driven video adaptation algorithm is presented to dynamically transcode the cached videos into appropriate resolution on edge server for each request. Finally, we conduct our simulation based on real-world datasets. The simulation results show that the proposed CSQCA framework outperforms traditional cache algorithms, in terms of the average hit ratio and QoE.
doi_str_mv 10.1109/TMM.2020.3040532
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2599215707</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9271894</ieee_id><sourcerecordid>2599215707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-da73ee0fa4d68c7b3d927ebe0295915a82df6c6e173c15bd47d5063aba9715603</originalsourceid><addsrcrecordid>eNo9kM1PAjEQxRujiYjeTbw08bw4bbdbeiQrfiSgMSLXprsdcHHdYneR-N9bhHiaSd578_Ej5JLBgDHQN7PpdMCBw0BAClLwI9JjOmUJgFLHsZccEs0ZnJKztl0BsFSC6pF57uvaFj7YrvpG-urLytbJaGsDUts4-uLHyW2IUkPnlUNPc1u-V83yTxw5u-5i0De0aujYLZE-Ybf14eOcnCxs3eLFofbJ2914lj8kk-f7x3w0SUquWZc4qwQiLGzqsmGpCuE0V1ggcC01k3bI3SIrM2RKlEwWLlVOQiZsYbViMgPRJ9f7uevgvzbYdmblN6GJKw2XOv4rFajogr2rDL5tAy7MOlSfNvwYBmZHz0R6ZkfPHOjFyNU-UiHivz1ex4Y6Fb8Y5Gn2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599215707</pqid></control><display><type>article</type><title>Collaborative Social-Aware and QoE-Driven Video Caching and Adaptation in Edge Network</title><source>IEEE Electronic Library (IEL)</source><creator>Chiang, Yao ; Hsu, Chih-Ho ; Wei, Hung-Yu</creator><creatorcontrib>Chiang, Yao ; Hsu, Chih-Ho ; Wei, Hung-Yu</creatorcontrib><description>With the emerging demand for high-definition videos in recent years, Multi-access Edge Computing (MEC) has become a promising solution to leverage Quality of Experience (QoE) of users in the 5G mobile network, which provides computing and cache resource at network edges to serve end users with less latency. Also, since mobile users tend to be influenced by the trends in social media, the performance of video caching will become more effective if we can extract the hidden information from interaction among them. In this paper, we propose a novel Collaborative Social-aware QoE-driven video Caching and Adaption (CSQCA) framework. Specifically, we first design a 2-tier MEC collaborative video caching architecture, which partially caches popular videos among multiple edge servers. Second, we propose a social-aware proactive cache strategy, which embeds interactions of users and video dissemination process in social networks into the caching mechanism. Third, a QoE-driven video adaptation algorithm is presented to dynamically transcode the cached videos into appropriate resolution on edge server for each request. Finally, we conduct our simulation based on real-world datasets. The simulation results show that the proposed CSQCA framework outperforms traditional cache algorithms, in terms of the average hit ratio and QoE.</description><identifier>ISSN: 1520-9210</identifier><identifier>EISSN: 1941-0077</identifier><identifier>DOI: 10.1109/TMM.2020.3040532</identifier><identifier>CODEN: ITMUF8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; Adaptation ; Algorithms ; Caching ; Collaboration ; collaborative caching ; Edge computing ; End users ; High definition ; Mobile computing ; Multi-access edge computingg ; Network latency ; Quality of experience ; Servers ; social network ; Social networking (online) ; Social networks ; Streaming media ; Transcoding ; User experience ; Video ; video adaptation</subject><ispartof>IEEE transactions on multimedia, 2021, Vol.23, p.4311-4325</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-da73ee0fa4d68c7b3d927ebe0295915a82df6c6e173c15bd47d5063aba9715603</citedby><cites>FETCH-LOGICAL-c291t-da73ee0fa4d68c7b3d927ebe0295915a82df6c6e173c15bd47d5063aba9715603</cites><orcidid>0000-0002-0392-6525 ; 0000-0002-3116-306X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9271894$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4022,27922,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9271894$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chiang, Yao</creatorcontrib><creatorcontrib>Hsu, Chih-Ho</creatorcontrib><creatorcontrib>Wei, Hung-Yu</creatorcontrib><title>Collaborative Social-Aware and QoE-Driven Video Caching and Adaptation in Edge Network</title><title>IEEE transactions on multimedia</title><addtitle>TMM</addtitle><description>With the emerging demand for high-definition videos in recent years, Multi-access Edge Computing (MEC) has become a promising solution to leverage Quality of Experience (QoE) of users in the 5G mobile network, which provides computing and cache resource at network edges to serve end users with less latency. Also, since mobile users tend to be influenced by the trends in social media, the performance of video caching will become more effective if we can extract the hidden information from interaction among them. In this paper, we propose a novel Collaborative Social-aware QoE-driven video Caching and Adaption (CSQCA) framework. Specifically, we first design a 2-tier MEC collaborative video caching architecture, which partially caches popular videos among multiple edge servers. Second, we propose a social-aware proactive cache strategy, which embeds interactions of users and video dissemination process in social networks into the caching mechanism. Third, a QoE-driven video adaptation algorithm is presented to dynamically transcode the cached videos into appropriate resolution on edge server for each request. Finally, we conduct our simulation based on real-world datasets. The simulation results show that the proposed CSQCA framework outperforms traditional cache algorithms, in terms of the average hit ratio and QoE.</description><subject>5G mobile communication</subject><subject>Adaptation</subject><subject>Algorithms</subject><subject>Caching</subject><subject>Collaboration</subject><subject>collaborative caching</subject><subject>Edge computing</subject><subject>End users</subject><subject>High definition</subject><subject>Mobile computing</subject><subject>Multi-access edge computingg</subject><subject>Network latency</subject><subject>Quality of experience</subject><subject>Servers</subject><subject>social network</subject><subject>Social networking (online)</subject><subject>Social networks</subject><subject>Streaming media</subject><subject>Transcoding</subject><subject>User experience</subject><subject>Video</subject><subject>video adaptation</subject><issn>1520-9210</issn><issn>1941-0077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1PAjEQxRujiYjeTbw08bw4bbdbeiQrfiSgMSLXprsdcHHdYneR-N9bhHiaSd578_Ej5JLBgDHQN7PpdMCBw0BAClLwI9JjOmUJgFLHsZccEs0ZnJKztl0BsFSC6pF57uvaFj7YrvpG-urLytbJaGsDUts4-uLHyW2IUkPnlUNPc1u-V83yTxw5u-5i0De0aujYLZE-Ybf14eOcnCxs3eLFofbJ2914lj8kk-f7x3w0SUquWZc4qwQiLGzqsmGpCuE0V1ggcC01k3bI3SIrM2RKlEwWLlVOQiZsYbViMgPRJ9f7uevgvzbYdmblN6GJKw2XOv4rFajogr2rDL5tAy7MOlSfNvwYBmZHz0R6ZkfPHOjFyNU-UiHivz1ex4Y6Fb8Y5Gn2</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Chiang, Yao</creator><creator>Hsu, Chih-Ho</creator><creator>Wei, Hung-Yu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0392-6525</orcidid><orcidid>https://orcid.org/0000-0002-3116-306X</orcidid></search><sort><creationdate>2021</creationdate><title>Collaborative Social-Aware and QoE-Driven Video Caching and Adaptation in Edge Network</title><author>Chiang, Yao ; Hsu, Chih-Ho ; Wei, Hung-Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-da73ee0fa4d68c7b3d927ebe0295915a82df6c6e173c15bd47d5063aba9715603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>5G mobile communication</topic><topic>Adaptation</topic><topic>Algorithms</topic><topic>Caching</topic><topic>Collaboration</topic><topic>collaborative caching</topic><topic>Edge computing</topic><topic>End users</topic><topic>High definition</topic><topic>Mobile computing</topic><topic>Multi-access edge computingg</topic><topic>Network latency</topic><topic>Quality of experience</topic><topic>Servers</topic><topic>social network</topic><topic>Social networking (online)</topic><topic>Social networks</topic><topic>Streaming media</topic><topic>Transcoding</topic><topic>User experience</topic><topic>Video</topic><topic>video adaptation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chiang, Yao</creatorcontrib><creatorcontrib>Hsu, Chih-Ho</creatorcontrib><creatorcontrib>Wei, Hung-Yu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on multimedia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chiang, Yao</au><au>Hsu, Chih-Ho</au><au>Wei, Hung-Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collaborative Social-Aware and QoE-Driven Video Caching and Adaptation in Edge Network</atitle><jtitle>IEEE transactions on multimedia</jtitle><stitle>TMM</stitle><date>2021</date><risdate>2021</risdate><volume>23</volume><spage>4311</spage><epage>4325</epage><pages>4311-4325</pages><issn>1520-9210</issn><eissn>1941-0077</eissn><coden>ITMUF8</coden><abstract>With the emerging demand for high-definition videos in recent years, Multi-access Edge Computing (MEC) has become a promising solution to leverage Quality of Experience (QoE) of users in the 5G mobile network, which provides computing and cache resource at network edges to serve end users with less latency. Also, since mobile users tend to be influenced by the trends in social media, the performance of video caching will become more effective if we can extract the hidden information from interaction among them. In this paper, we propose a novel Collaborative Social-aware QoE-driven video Caching and Adaption (CSQCA) framework. Specifically, we first design a 2-tier MEC collaborative video caching architecture, which partially caches popular videos among multiple edge servers. Second, we propose a social-aware proactive cache strategy, which embeds interactions of users and video dissemination process in social networks into the caching mechanism. Third, a QoE-driven video adaptation algorithm is presented to dynamically transcode the cached videos into appropriate resolution on edge server for each request. Finally, we conduct our simulation based on real-world datasets. The simulation results show that the proposed CSQCA framework outperforms traditional cache algorithms, in terms of the average hit ratio and QoE.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMM.2020.3040532</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0392-6525</orcidid><orcidid>https://orcid.org/0000-0002-3116-306X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-9210
ispartof IEEE transactions on multimedia, 2021, Vol.23, p.4311-4325
issn 1520-9210
1941-0077
language eng
recordid cdi_proquest_journals_2599215707
source IEEE Electronic Library (IEL)
subjects 5G mobile communication
Adaptation
Algorithms
Caching
Collaboration
collaborative caching
Edge computing
End users
High definition
Mobile computing
Multi-access edge computingg
Network latency
Quality of experience
Servers
social network
Social networking (online)
Social networks
Streaming media
Transcoding
User experience
Video
video adaptation
title Collaborative Social-Aware and QoE-Driven Video Caching and Adaptation in Edge Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A30%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collaborative%20Social-Aware%20and%20QoE-Driven%20Video%20Caching%20and%20Adaptation%20in%20Edge%20Network&rft.jtitle=IEEE%20transactions%20on%20multimedia&rft.au=Chiang,%20Yao&rft.date=2021&rft.volume=23&rft.spage=4311&rft.epage=4325&rft.pages=4311-4325&rft.issn=1520-9210&rft.eissn=1941-0077&rft.coden=ITMUF8&rft_id=info:doi/10.1109/TMM.2020.3040532&rft_dat=%3Cproquest_RIE%3E2599215707%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599215707&rft_id=info:pmid/&rft_ieee_id=9271894&rfr_iscdi=true