Prediction of Larynx Function Using Multichannel Surface EMG Classification

Total laryngectomy (TL) affects critical functions such as swallowing, coughing and speaking. An artificial, bioengineered larynx (ABL), operated via myoelectric signals, may improve quality of life for TL patients. To evaluate the efficacy of using surface electromyography (sEMG) as a control signa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical robotics and bionics 2021-11, Vol.3 (4), p.1032-1039
Hauptverfasser: McNulty, Johnny, de Jager, Kylie, Lancashire, Henry T., Graveston, James, Birchall, Martin, Vanhoestenberghe, Anne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1039
container_issue 4
container_start_page 1032
container_title IEEE transactions on medical robotics and bionics
container_volume 3
creator McNulty, Johnny
de Jager, Kylie
Lancashire, Henry T.
Graveston, James
Birchall, Martin
Vanhoestenberghe, Anne
description Total laryngectomy (TL) affects critical functions such as swallowing, coughing and speaking. An artificial, bioengineered larynx (ABL), operated via myoelectric signals, may improve quality of life for TL patients. To evaluate the efficacy of using surface electromyography (sEMG) as a control signal to predict instances of swallowing, coughing and speaking, sEMG was recorded from submental, intercostal and diaphragm muscles. The cohort included TL and control participants. Swallowing, coughing, speaking and movement actions were recorded, and a range of classifiers were investigated for prediction of these actions. Our algorithm achieved F1-scores of 76.0 ± 4.4% (swallows), 93.8 ± 2.8% (coughs) and 70.5 ± 5.4% (speech) for controls, and 67.7 ± 4.4% (swallows), 71.0 ± 9.1% (coughs) and 78.0 ± 3.8% (speech) for TLs, using a random forest (RF) classifier. 75.1 ± 6.9% of swallows were detected within 500 ms of onset in the controls, and 63.1 ± 6.1% in TLs. sEMG can be used to predict critical larynx movements, although a viable ABL requires improvements. Results are particularly encouraging as they encompass a TL cohort. An ABL could alleviate many challenges faced by laryngectomees. This study represents a promising step toward realising such a device.
doi_str_mv 10.1109/TMRB.2021.3122966
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2599205639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9585573</ieee_id><sourcerecordid>2599205639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-49fc05831db4b57c4ba76ea264bf9638103c09f8aa5fa764a5b5e706229c83f93</originalsourceid><addsrcrecordid>eNpdkd1LHDEUxYNUVNQ_oBTKQF_6suvN9-Sl0C5-4S5Kq88hk000MpvRZEb0vzfDbhfbp4R7fvdwDwehzximGIM6uV38_jUlQPCUYkKUEDvogHApJrQMP33476PjnB8BCspBUrGH9ilTgKVgB-jqJrllsH3oYtX5am7SW3ytzoa4Ht3lEO-rxdD2wT6YGF1b_RmSN9ZVp4vzataanIMP1oz0Edr1ps3uePMeoruz09vZxWR-fX45-zmfWMZkP2HKW-A1xcuGNVxa1hgpnCGCNV4JWmOgFpSvjeG-KMzwhjsJooS0NfWKHqIfa9-noVm5pXWxT6bVTymsyvm6M0H_q8TwoO-7Fy0FJlDjYvB9Y5C658HlXq9Ctq5tTXTdkDURGEBKILSg3_5DH7shxRJPE64UAS7oeBFeUzZ1OSfnt8dg0GNbemxLj23pTVtl5-vHFNuNv90U4MsaCM65rax4zbmk9B3Wmphn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599205639</pqid></control><display><type>article</type><title>Prediction of Larynx Function Using Multichannel Surface EMG Classification</title><source>IEEE Electronic Library Online</source><creator>McNulty, Johnny ; de Jager, Kylie ; Lancashire, Henry T. ; Graveston, James ; Birchall, Martin ; Vanhoestenberghe, Anne</creator><creatorcontrib>McNulty, Johnny ; de Jager, Kylie ; Lancashire, Henry T. ; Graveston, James ; Birchall, Martin ; Vanhoestenberghe, Anne</creatorcontrib><description>Total laryngectomy (TL) affects critical functions such as swallowing, coughing and speaking. An artificial, bioengineered larynx (ABL), operated via myoelectric signals, may improve quality of life for TL patients. To evaluate the efficacy of using surface electromyography (sEMG) as a control signal to predict instances of swallowing, coughing and speaking, sEMG was recorded from submental, intercostal and diaphragm muscles. The cohort included TL and control participants. Swallowing, coughing, speaking and movement actions were recorded, and a range of classifiers were investigated for prediction of these actions. Our algorithm achieved F1-scores of 76.0 ± 4.4% (swallows), 93.8 ± 2.8% (coughs) and 70.5 ± 5.4% (speech) for controls, and 67.7 ± 4.4% (swallows), 71.0 ± 9.1% (coughs) and 78.0 ± 3.8% (speech) for TLs, using a random forest (RF) classifier. 75.1 ± 6.9% of swallows were detected within 500 ms of onset in the controls, and 63.1 ± 6.1% in TLs. sEMG can be used to predict critical larynx movements, although a viable ABL requires improvements. Results are particularly encouraging as they encompass a TL cohort. An ABL could alleviate many challenges faced by laryngectomees. This study represents a promising step toward realising such a device.</description><identifier>ISSN: 2576-3202</identifier><identifier>EISSN: 2576-3202</identifier><identifier>DOI: 10.1109/TMRB.2021.3122966</identifier><identifier>PMID: 34901764</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial larynx ; Bioengineering ; Classifiers ; coughing ; Electromyography ; Larynx ; Muscles ; Myoelectricity ; Pattern recognition ; Signal quality ; Speaking ; Speech ; surface electromyography (sEMG) ; Swallowing ; total laryngectomy</subject><ispartof>IEEE transactions on medical robotics and bionics, 2021-11, Vol.3 (4), p.1032-1039</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-49fc05831db4b57c4ba76ea264bf9638103c09f8aa5fa764a5b5e706229c83f93</citedby><cites>FETCH-LOGICAL-c447t-49fc05831db4b57c4ba76ea264bf9638103c09f8aa5fa764a5b5e706229c83f93</cites><orcidid>0000-0002-7244-5864 ; 0000-0002-8428-7752 ; 0000-0002-1377-7439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9585573$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9585573$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34901764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McNulty, Johnny</creatorcontrib><creatorcontrib>de Jager, Kylie</creatorcontrib><creatorcontrib>Lancashire, Henry T.</creatorcontrib><creatorcontrib>Graveston, James</creatorcontrib><creatorcontrib>Birchall, Martin</creatorcontrib><creatorcontrib>Vanhoestenberghe, Anne</creatorcontrib><title>Prediction of Larynx Function Using Multichannel Surface EMG Classification</title><title>IEEE transactions on medical robotics and bionics</title><addtitle>TMRB</addtitle><addtitle>IEEE Trans Med Robot Bionics</addtitle><description>Total laryngectomy (TL) affects critical functions such as swallowing, coughing and speaking. An artificial, bioengineered larynx (ABL), operated via myoelectric signals, may improve quality of life for TL patients. To evaluate the efficacy of using surface electromyography (sEMG) as a control signal to predict instances of swallowing, coughing and speaking, sEMG was recorded from submental, intercostal and diaphragm muscles. The cohort included TL and control participants. Swallowing, coughing, speaking and movement actions were recorded, and a range of classifiers were investigated for prediction of these actions. Our algorithm achieved F1-scores of 76.0 ± 4.4% (swallows), 93.8 ± 2.8% (coughs) and 70.5 ± 5.4% (speech) for controls, and 67.7 ± 4.4% (swallows), 71.0 ± 9.1% (coughs) and 78.0 ± 3.8% (speech) for TLs, using a random forest (RF) classifier. 75.1 ± 6.9% of swallows were detected within 500 ms of onset in the controls, and 63.1 ± 6.1% in TLs. sEMG can be used to predict critical larynx movements, although a viable ABL requires improvements. Results are particularly encouraging as they encompass a TL cohort. An ABL could alleviate many challenges faced by laryngectomees. This study represents a promising step toward realising such a device.</description><subject>Algorithms</subject><subject>Artificial larynx</subject><subject>Bioengineering</subject><subject>Classifiers</subject><subject>coughing</subject><subject>Electromyography</subject><subject>Larynx</subject><subject>Muscles</subject><subject>Myoelectricity</subject><subject>Pattern recognition</subject><subject>Signal quality</subject><subject>Speaking</subject><subject>Speech</subject><subject>surface electromyography (sEMG)</subject><subject>Swallowing</subject><subject>total laryngectomy</subject><issn>2576-3202</issn><issn>2576-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkd1LHDEUxYNUVNQ_oBTKQF_6suvN9-Sl0C5-4S5Kq88hk000MpvRZEb0vzfDbhfbp4R7fvdwDwehzximGIM6uV38_jUlQPCUYkKUEDvogHApJrQMP33476PjnB8BCspBUrGH9ilTgKVgB-jqJrllsH3oYtX5am7SW3ytzoa4Ht3lEO-rxdD2wT6YGF1b_RmSN9ZVp4vzataanIMP1oz0Edr1ps3uePMeoruz09vZxWR-fX45-zmfWMZkP2HKW-A1xcuGNVxa1hgpnCGCNV4JWmOgFpSvjeG-KMzwhjsJooS0NfWKHqIfa9-noVm5pXWxT6bVTymsyvm6M0H_q8TwoO-7Fy0FJlDjYvB9Y5C658HlXq9Ctq5tTXTdkDURGEBKILSg3_5DH7shxRJPE64UAS7oeBFeUzZ1OSfnt8dg0GNbemxLj23pTVtl5-vHFNuNv90U4MsaCM65rax4zbmk9B3Wmphn</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>McNulty, Johnny</creator><creator>de Jager, Kylie</creator><creator>Lancashire, Henry T.</creator><creator>Graveston, James</creator><creator>Birchall, Martin</creator><creator>Vanhoestenberghe, Anne</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>K9.</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7244-5864</orcidid><orcidid>https://orcid.org/0000-0002-8428-7752</orcidid><orcidid>https://orcid.org/0000-0002-1377-7439</orcidid></search><sort><creationdate>20211101</creationdate><title>Prediction of Larynx Function Using Multichannel Surface EMG Classification</title><author>McNulty, Johnny ; de Jager, Kylie ; Lancashire, Henry T. ; Graveston, James ; Birchall, Martin ; Vanhoestenberghe, Anne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-49fc05831db4b57c4ba76ea264bf9638103c09f8aa5fa764a5b5e706229c83f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial larynx</topic><topic>Bioengineering</topic><topic>Classifiers</topic><topic>coughing</topic><topic>Electromyography</topic><topic>Larynx</topic><topic>Muscles</topic><topic>Myoelectricity</topic><topic>Pattern recognition</topic><topic>Signal quality</topic><topic>Speaking</topic><topic>Speech</topic><topic>surface electromyography (sEMG)</topic><topic>Swallowing</topic><topic>total laryngectomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McNulty, Johnny</creatorcontrib><creatorcontrib>de Jager, Kylie</creatorcontrib><creatorcontrib>Lancashire, Henry T.</creatorcontrib><creatorcontrib>Graveston, James</creatorcontrib><creatorcontrib>Birchall, Martin</creatorcontrib><creatorcontrib>Vanhoestenberghe, Anne</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>IEEE transactions on medical robotics and bionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>McNulty, Johnny</au><au>de Jager, Kylie</au><au>Lancashire, Henry T.</au><au>Graveston, James</au><au>Birchall, Martin</au><au>Vanhoestenberghe, Anne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Larynx Function Using Multichannel Surface EMG Classification</atitle><jtitle>IEEE transactions on medical robotics and bionics</jtitle><stitle>TMRB</stitle><addtitle>IEEE Trans Med Robot Bionics</addtitle><date>2021-11-01</date><risdate>2021</risdate><volume>3</volume><issue>4</issue><spage>1032</spage><epage>1039</epage><pages>1032-1039</pages><issn>2576-3202</issn><eissn>2576-3202</eissn><abstract>Total laryngectomy (TL) affects critical functions such as swallowing, coughing and speaking. An artificial, bioengineered larynx (ABL), operated via myoelectric signals, may improve quality of life for TL patients. To evaluate the efficacy of using surface electromyography (sEMG) as a control signal to predict instances of swallowing, coughing and speaking, sEMG was recorded from submental, intercostal and diaphragm muscles. The cohort included TL and control participants. Swallowing, coughing, speaking and movement actions were recorded, and a range of classifiers were investigated for prediction of these actions. Our algorithm achieved F1-scores of 76.0 ± 4.4% (swallows), 93.8 ± 2.8% (coughs) and 70.5 ± 5.4% (speech) for controls, and 67.7 ± 4.4% (swallows), 71.0 ± 9.1% (coughs) and 78.0 ± 3.8% (speech) for TLs, using a random forest (RF) classifier. 75.1 ± 6.9% of swallows were detected within 500 ms of onset in the controls, and 63.1 ± 6.1% in TLs. sEMG can be used to predict critical larynx movements, although a viable ABL requires improvements. Results are particularly encouraging as they encompass a TL cohort. An ABL could alleviate many challenges faced by laryngectomees. This study represents a promising step toward realising such a device.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34901764</pmid><doi>10.1109/TMRB.2021.3122966</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-7244-5864</orcidid><orcidid>https://orcid.org/0000-0002-8428-7752</orcidid><orcidid>https://orcid.org/0000-0002-1377-7439</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2576-3202
ispartof IEEE transactions on medical robotics and bionics, 2021-11, Vol.3 (4), p.1032-1039
issn 2576-3202
2576-3202
language eng
recordid cdi_proquest_journals_2599205639
source IEEE Electronic Library Online
subjects Algorithms
Artificial larynx
Bioengineering
Classifiers
coughing
Electromyography
Larynx
Muscles
Myoelectricity
Pattern recognition
Signal quality
Speaking
Speech
surface electromyography (sEMG)
Swallowing
total laryngectomy
title Prediction of Larynx Function Using Multichannel Surface EMG Classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A07%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Larynx%20Function%20Using%20Multichannel%20Surface%20EMG%20Classification&rft.jtitle=IEEE%20transactions%20on%20medical%20robotics%20and%20bionics&rft.au=McNulty,%20Johnny&rft.date=2021-11-01&rft.volume=3&rft.issue=4&rft.spage=1032&rft.epage=1039&rft.pages=1032-1039&rft.issn=2576-3202&rft.eissn=2576-3202&rft_id=info:doi/10.1109/TMRB.2021.3122966&rft_dat=%3Cproquest_RIE%3E2599205639%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599205639&rft_id=info:pmid/34901764&rft_ieee_id=9585573&rfr_iscdi=true