Multihop Weibull-fading communications: Performance analysis framework and applications
The paper presents a comprehensive closed-form performance analysis framework for multihop communications over Weibull fading channels. This framework may be of interest in different applications in the contexts of beyond-5G (B5G) and Internet of Things (IoT) use cases. The analyzed scheme consists...
Gespeichert in:
Veröffentlicht in: | Journal of the Franklin Institute 2021-10, Vol.358 (15), p.8012-8044 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8044 |
---|---|
container_issue | 15 |
container_start_page | 8012 |
container_title | Journal of the Franklin Institute |
container_volume | 358 |
creator | Soulimani, Abdelaziz Benjillali, Mustapha Chergui, Hatim da Costa, Daniel B. |
description | The paper presents a comprehensive closed-form performance analysis framework for multihop communications over Weibull fading channels. This framework may be of interest in different applications in the contexts of beyond-5G (B5G) and Internet of Things (IoT) use cases. The analyzed scheme consists generally of multiple regenerative relays, and we also consider generalized high-order quadrature amplitude modulation (M-QAM) transmissions. To take into consideration the channel fading, we adopt the Weibull model for its largely flexible ability to cover different channel conditions in different application contexts. The end-to-end performance is evaluated in terms of outage probability, bit error probability (BER), symbol error probability (SER), block error rate (BLER), ergodic capacity, and energy efficiency (EE). For all the metrics, we present exact closed-form expressions—along with their asymptotic behavior—capitalizing on the powerful generalized hypergeometric functions. To illustrate the utility of the obtained analytical results, we derive two BER- and EE-optimal transmit power allocation strategies, and we discuss the resulting performance gains. The exactness of our analysis is illustrated by numerical examples, and assessed via Monte-Carlo simulations for different system and channel parameters. Finally, as a secondary contribution, and noting the increasing popularity of single and bivariate Fox’s H-function, we provide generalized Matlab codes for computing these functions which are of practical utility in many fields. |
doi_str_mv | 10.1016/j.jfranklin.2021.08.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599116586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016003221004701</els_id><sourcerecordid>2599116586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-a011935e561098d9c1b2374b85ee8e3e0fc4abf9e1587cb0ddfbdc45cb3160ef3</originalsourceid><addsrcrecordid>eNqFkE9PwzAMxSMEEmPwGajEucVp1zbhNiH-SUNwAO0YpakD6dqmJC1o355MA66cLFvvPds_Qs4pJBRocdkkjXay37SmT1JIaQIsAVgckBllJY_TgmeHZAZBGgNk6TE58b4JbUkBZmT9OLWjebdDtEZTTW0ba1mb_i1Stuum3ig5Gtv7q-gZnbauk73CSPay3Xrjo7C4wy_rNmFUR3IY2l_DKTnSsvV49lPn5PX25uX6Pl493T1cL1exyng6xhIo5VmOeUGBs5orWqVZuahYjsgwQ9BqISvNkeasVBXUta5qtchVldECUGdzcrHPHZz9mNCPorGTC_d5keacU1rkrAiqcq9SznrvUIvBmU66raAgdhRFI_4oih1FAUwEisG53DsxPPFp0AmvDAYItXGoRlFb82_GN8ULgcQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599116586</pqid></control><display><type>article</type><title>Multihop Weibull-fading communications: Performance analysis framework and applications</title><source>Access via ScienceDirect (Elsevier)</source><creator>Soulimani, Abdelaziz ; Benjillali, Mustapha ; Chergui, Hatim ; da Costa, Daniel B.</creator><creatorcontrib>Soulimani, Abdelaziz ; Benjillali, Mustapha ; Chergui, Hatim ; da Costa, Daniel B.</creatorcontrib><description>The paper presents a comprehensive closed-form performance analysis framework for multihop communications over Weibull fading channels. This framework may be of interest in different applications in the contexts of beyond-5G (B5G) and Internet of Things (IoT) use cases. The analyzed scheme consists generally of multiple regenerative relays, and we also consider generalized high-order quadrature amplitude modulation (M-QAM) transmissions. To take into consideration the channel fading, we adopt the Weibull model for its largely flexible ability to cover different channel conditions in different application contexts. The end-to-end performance is evaluated in terms of outage probability, bit error probability (BER), symbol error probability (SER), block error rate (BLER), ergodic capacity, and energy efficiency (EE). For all the metrics, we present exact closed-form expressions—along with their asymptotic behavior—capitalizing on the powerful generalized hypergeometric functions. To illustrate the utility of the obtained analytical results, we derive two BER- and EE-optimal transmit power allocation strategies, and we discuss the resulting performance gains. The exactness of our analysis is illustrated by numerical examples, and assessed via Monte-Carlo simulations for different system and channel parameters. Finally, as a secondary contribution, and noting the increasing popularity of single and bivariate Fox’s H-function, we provide generalized Matlab codes for computing these functions which are of practical utility in many fields.</description><identifier>ISSN: 0016-0032</identifier><identifier>EISSN: 1879-2693</identifier><identifier>EISSN: 0016-0032</identifier><identifier>DOI: 10.1016/j.jfranklin.2021.08.004</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>Asymptotic properties ; Bivariate analysis ; Closed form solutions ; Energy efficiency ; Errors ; Exact solutions ; Fading ; Hypergeometric functions ; Internet of Things ; Monte Carlo simulation ; Numerical analysis ; Performance evaluation ; Probability ; Quadrature amplitude modulation</subject><ispartof>Journal of the Franklin Institute, 2021-10, Vol.358 (15), p.8012-8044</ispartof><rights>2021 The Franklin Institute</rights><rights>Copyright Elsevier Science Ltd. Oct 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-a011935e561098d9c1b2374b85ee8e3e0fc4abf9e1587cb0ddfbdc45cb3160ef3</citedby><cites>FETCH-LOGICAL-c392t-a011935e561098d9c1b2374b85ee8e3e0fc4abf9e1587cb0ddfbdc45cb3160ef3</cites><orcidid>0000-0002-2995-1067 ; 0000-0003-1061-7349 ; 0000-0003-1797-746X ; 0000-0002-5439-7475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfranklin.2021.08.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Soulimani, Abdelaziz</creatorcontrib><creatorcontrib>Benjillali, Mustapha</creatorcontrib><creatorcontrib>Chergui, Hatim</creatorcontrib><creatorcontrib>da Costa, Daniel B.</creatorcontrib><title>Multihop Weibull-fading communications: Performance analysis framework and applications</title><title>Journal of the Franklin Institute</title><description>The paper presents a comprehensive closed-form performance analysis framework for multihop communications over Weibull fading channels. This framework may be of interest in different applications in the contexts of beyond-5G (B5G) and Internet of Things (IoT) use cases. The analyzed scheme consists generally of multiple regenerative relays, and we also consider generalized high-order quadrature amplitude modulation (M-QAM) transmissions. To take into consideration the channel fading, we adopt the Weibull model for its largely flexible ability to cover different channel conditions in different application contexts. The end-to-end performance is evaluated in terms of outage probability, bit error probability (BER), symbol error probability (SER), block error rate (BLER), ergodic capacity, and energy efficiency (EE). For all the metrics, we present exact closed-form expressions—along with their asymptotic behavior—capitalizing on the powerful generalized hypergeometric functions. To illustrate the utility of the obtained analytical results, we derive two BER- and EE-optimal transmit power allocation strategies, and we discuss the resulting performance gains. The exactness of our analysis is illustrated by numerical examples, and assessed via Monte-Carlo simulations for different system and channel parameters. Finally, as a secondary contribution, and noting the increasing popularity of single and bivariate Fox’s H-function, we provide generalized Matlab codes for computing these functions which are of practical utility in many fields.</description><subject>Asymptotic properties</subject><subject>Bivariate analysis</subject><subject>Closed form solutions</subject><subject>Energy efficiency</subject><subject>Errors</subject><subject>Exact solutions</subject><subject>Fading</subject><subject>Hypergeometric functions</subject><subject>Internet of Things</subject><subject>Monte Carlo simulation</subject><subject>Numerical analysis</subject><subject>Performance evaluation</subject><subject>Probability</subject><subject>Quadrature amplitude modulation</subject><issn>0016-0032</issn><issn>1879-2693</issn><issn>0016-0032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PwzAMxSMEEmPwGajEucVp1zbhNiH-SUNwAO0YpakD6dqmJC1o355MA66cLFvvPds_Qs4pJBRocdkkjXay37SmT1JIaQIsAVgckBllJY_TgmeHZAZBGgNk6TE58b4JbUkBZmT9OLWjebdDtEZTTW0ba1mb_i1Stuum3ig5Gtv7q-gZnbauk73CSPay3Xrjo7C4wy_rNmFUR3IY2l_DKTnSsvV49lPn5PX25uX6Pl493T1cL1exyng6xhIo5VmOeUGBs5orWqVZuahYjsgwQ9BqISvNkeasVBXUta5qtchVldECUGdzcrHPHZz9mNCPorGTC_d5keacU1rkrAiqcq9SznrvUIvBmU66raAgdhRFI_4oih1FAUwEisG53DsxPPFp0AmvDAYItXGoRlFb82_GN8ULgcQ</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Soulimani, Abdelaziz</creator><creator>Benjillali, Mustapha</creator><creator>Chergui, Hatim</creator><creator>da Costa, Daniel B.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-2995-1067</orcidid><orcidid>https://orcid.org/0000-0003-1061-7349</orcidid><orcidid>https://orcid.org/0000-0003-1797-746X</orcidid><orcidid>https://orcid.org/0000-0002-5439-7475</orcidid></search><sort><creationdate>202110</creationdate><title>Multihop Weibull-fading communications: Performance analysis framework and applications</title><author>Soulimani, Abdelaziz ; Benjillali, Mustapha ; Chergui, Hatim ; da Costa, Daniel B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-a011935e561098d9c1b2374b85ee8e3e0fc4abf9e1587cb0ddfbdc45cb3160ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic properties</topic><topic>Bivariate analysis</topic><topic>Closed form solutions</topic><topic>Energy efficiency</topic><topic>Errors</topic><topic>Exact solutions</topic><topic>Fading</topic><topic>Hypergeometric functions</topic><topic>Internet of Things</topic><topic>Monte Carlo simulation</topic><topic>Numerical analysis</topic><topic>Performance evaluation</topic><topic>Probability</topic><topic>Quadrature amplitude modulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soulimani, Abdelaziz</creatorcontrib><creatorcontrib>Benjillali, Mustapha</creatorcontrib><creatorcontrib>Chergui, Hatim</creatorcontrib><creatorcontrib>da Costa, Daniel B.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of the Franklin Institute</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soulimani, Abdelaziz</au><au>Benjillali, Mustapha</au><au>Chergui, Hatim</au><au>da Costa, Daniel B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multihop Weibull-fading communications: Performance analysis framework and applications</atitle><jtitle>Journal of the Franklin Institute</jtitle><date>2021-10</date><risdate>2021</risdate><volume>358</volume><issue>15</issue><spage>8012</spage><epage>8044</epage><pages>8012-8044</pages><issn>0016-0032</issn><eissn>1879-2693</eissn><eissn>0016-0032</eissn><abstract>The paper presents a comprehensive closed-form performance analysis framework for multihop communications over Weibull fading channels. This framework may be of interest in different applications in the contexts of beyond-5G (B5G) and Internet of Things (IoT) use cases. The analyzed scheme consists generally of multiple regenerative relays, and we also consider generalized high-order quadrature amplitude modulation (M-QAM) transmissions. To take into consideration the channel fading, we adopt the Weibull model for its largely flexible ability to cover different channel conditions in different application contexts. The end-to-end performance is evaluated in terms of outage probability, bit error probability (BER), symbol error probability (SER), block error rate (BLER), ergodic capacity, and energy efficiency (EE). For all the metrics, we present exact closed-form expressions—along with their asymptotic behavior—capitalizing on the powerful generalized hypergeometric functions. To illustrate the utility of the obtained analytical results, we derive two BER- and EE-optimal transmit power allocation strategies, and we discuss the resulting performance gains. The exactness of our analysis is illustrated by numerical examples, and assessed via Monte-Carlo simulations for different system and channel parameters. Finally, as a secondary contribution, and noting the increasing popularity of single and bivariate Fox’s H-function, we provide generalized Matlab codes for computing these functions which are of practical utility in many fields.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jfranklin.2021.08.004</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-2995-1067</orcidid><orcidid>https://orcid.org/0000-0003-1061-7349</orcidid><orcidid>https://orcid.org/0000-0003-1797-746X</orcidid><orcidid>https://orcid.org/0000-0002-5439-7475</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-0032 |
ispartof | Journal of the Franklin Institute, 2021-10, Vol.358 (15), p.8012-8044 |
issn | 0016-0032 1879-2693 0016-0032 |
language | eng |
recordid | cdi_proquest_journals_2599116586 |
source | Access via ScienceDirect (Elsevier) |
subjects | Asymptotic properties Bivariate analysis Closed form solutions Energy efficiency Errors Exact solutions Fading Hypergeometric functions Internet of Things Monte Carlo simulation Numerical analysis Performance evaluation Probability Quadrature amplitude modulation |
title | Multihop Weibull-fading communications: Performance analysis framework and applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A04%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multihop%20Weibull-fading%20communications:%20Performance%20analysis%20framework%20and%20applications&rft.jtitle=Journal%20of%20the%20Franklin%20Institute&rft.au=Soulimani,%20Abdelaziz&rft.date=2021-10&rft.volume=358&rft.issue=15&rft.spage=8012&rft.epage=8044&rft.pages=8012-8044&rft.issn=0016-0032&rft.eissn=1879-2693&rft_id=info:doi/10.1016/j.jfranklin.2021.08.004&rft_dat=%3Cproquest_cross%3E2599116586%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599116586&rft_id=info:pmid/&rft_els_id=S0016003221004701&rfr_iscdi=true |