On the performance investigation of a fast optical switches based optical high performance computing infrastructure
Optical networks based on fast optical switches (FOSes) could potentially solve the latency, bandwidth, cost and power consumption challenges in current electrical switches (ESes) based high performance computing (HPC) networks. In this work, we present a novel HPC network which employs distributed...
Gespeichert in:
Veröffentlicht in: | Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2021-10, Vol.198, p.108349, Article 108349 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 108349 |
container_title | Computer networks (Amsterdam, Netherlands : 1999) |
container_volume | 198 |
creator | Yan, Fulong Meyer, Hugo Yuan, Changshun Xue, Xuwei Pan, Bitao Guo, Xiaotao Calabretta, Nicola Xie, Chongjin |
description | Optical networks based on fast optical switches (FOSes) could potentially solve the latency, bandwidth, cost and power consumption challenges in current electrical switches (ESes) based high performance computing (HPC) networks. In this work, we present a novel HPC network which employs distributed FOS interconnecting by removing ES (Firefly). In Firefly, Dragonfly topology is adopted for the inter-group connection of blades, while the intra-group connection of blades is implemented by FOS with fast optical flow control. The Firefly exploits the wavelength, space, and time switching domain with nanoseconds reconfiguration time of the FOS to achieve efficient statistical multiplexing operation. We numerically investigate the Firefly performance with real HPC traffic traces collected by running multiple computing applications in MareNostrum 3 HPC infrastructure with Leaf-Spine architecture. Compared with Leaf Spine architecture, results show that Firefly performs 62.4%, 54%, 68.6%, and 71.8% less latency for the applications Conjugate Gradient (CG), Multi-Grid (MG), Multiple Instruction Lattice Computation (MILC), and Miniature Molecular Dynamics (MINI_MD), respectively. Moreover, Firefly can save 56.4% cost and 65.7% power consumption, respectively, with respect to Leaf-Spine when both support around 10,000 blades. |
doi_str_mv | 10.1016/j.comnet.2021.108349 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599116032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389128621003418</els_id><sourcerecordid>2599116032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-4fae4d24897c448b20037f288c2b59d55d21041fa9ad6e04a45e9d4e996005b03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouH78Aw8Bz12TNG2TiyCLX7CwFz2HNJ1sU3abmqQr_nuzVAQvnmYY3nlm3jfLbgheEkyqu36p3X6AuKSYkjTiBRMn2YLwmuY1rsRp6gsuckJ5dZ5dhNBjjBmjfJGFzYBiB2gEb5zfq0EDssMBQrRbFa0bkDNIIaNCRG6MVqsdCp826g4CalSA9nfc2W33h5OeGqdoh20iGp8IftJx8nCVnRm1C3D9Uy-z96fHt9VLvt48v64e1rkuChZzZhSwljIuas0YbyjGRW0o55o2pWjLsqUEM2KUUG0FmClWgmgZCFFhXDa4uMxuZ-7o3ceULMneTX5IJyUthSCkwgVNKjartHcheDBy9Hav_JckWB7jlb2c45XHeOUcb1q7n9cgOThY8DJoC8l2az3oKFtn_wd8A1sDhx8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599116032</pqid></control><display><type>article</type><title>On the performance investigation of a fast optical switches based optical high performance computing infrastructure</title><source>Elsevier ScienceDirect Journals</source><creator>Yan, Fulong ; Meyer, Hugo ; Yuan, Changshun ; Xue, Xuwei ; Pan, Bitao ; Guo, Xiaotao ; Calabretta, Nicola ; Xie, Chongjin</creator><creatorcontrib>Yan, Fulong ; Meyer, Hugo ; Yuan, Changshun ; Xue, Xuwei ; Pan, Bitao ; Guo, Xiaotao ; Calabretta, Nicola ; Xie, Chongjin</creatorcontrib><description>Optical networks based on fast optical switches (FOSes) could potentially solve the latency, bandwidth, cost and power consumption challenges in current electrical switches (ESes) based high performance computing (HPC) networks. In this work, we present a novel HPC network which employs distributed FOS interconnecting by removing ES (Firefly). In Firefly, Dragonfly topology is adopted for the inter-group connection of blades, while the intra-group connection of blades is implemented by FOS with fast optical flow control. The Firefly exploits the wavelength, space, and time switching domain with nanoseconds reconfiguration time of the FOS to achieve efficient statistical multiplexing operation. We numerically investigate the Firefly performance with real HPC traffic traces collected by running multiple computing applications in MareNostrum 3 HPC infrastructure with Leaf-Spine architecture. Compared with Leaf Spine architecture, results show that Firefly performs 62.4%, 54%, 68.6%, and 71.8% less latency for the applications Conjugate Gradient (CG), Multi-Grid (MG), Multiple Instruction Lattice Computation (MILC), and Miniature Molecular Dynamics (MINI_MD), respectively. Moreover, Firefly can save 56.4% cost and 65.7% power consumption, respectively, with respect to Leaf-Spine when both support around 10,000 blades.</description><identifier>ISSN: 1389-1286</identifier><identifier>EISSN: 1872-7069</identifier><identifier>DOI: 10.1016/j.comnet.2021.108349</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Blades ; Computation ; Cost and power consumption ; Fast optical switch ; Fireflies ; Flow control ; High performance computing ; Infrastructure ; Molecular dynamics ; Multiplexing ; Network architecture ; Network latency ; Optical communication ; Optical flow (image analysis) ; Power consumption ; Reconfiguration ; Switches ; Topology</subject><ispartof>Computer networks (Amsterdam, Netherlands : 1999), 2021-10, Vol.198, p.108349, Article 108349</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Oct 24, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-4fae4d24897c448b20037f288c2b59d55d21041fa9ad6e04a45e9d4e996005b03</citedby><cites>FETCH-LOGICAL-c334t-4fae4d24897c448b20037f288c2b59d55d21041fa9ad6e04a45e9d4e996005b03</cites><orcidid>0000-0001-9106-2538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1389128621003418$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yan, Fulong</creatorcontrib><creatorcontrib>Meyer, Hugo</creatorcontrib><creatorcontrib>Yuan, Changshun</creatorcontrib><creatorcontrib>Xue, Xuwei</creatorcontrib><creatorcontrib>Pan, Bitao</creatorcontrib><creatorcontrib>Guo, Xiaotao</creatorcontrib><creatorcontrib>Calabretta, Nicola</creatorcontrib><creatorcontrib>Xie, Chongjin</creatorcontrib><title>On the performance investigation of a fast optical switches based optical high performance computing infrastructure</title><title>Computer networks (Amsterdam, Netherlands : 1999)</title><description>Optical networks based on fast optical switches (FOSes) could potentially solve the latency, bandwidth, cost and power consumption challenges in current electrical switches (ESes) based high performance computing (HPC) networks. In this work, we present a novel HPC network which employs distributed FOS interconnecting by removing ES (Firefly). In Firefly, Dragonfly topology is adopted for the inter-group connection of blades, while the intra-group connection of blades is implemented by FOS with fast optical flow control. The Firefly exploits the wavelength, space, and time switching domain with nanoseconds reconfiguration time of the FOS to achieve efficient statistical multiplexing operation. We numerically investigate the Firefly performance with real HPC traffic traces collected by running multiple computing applications in MareNostrum 3 HPC infrastructure with Leaf-Spine architecture. Compared with Leaf Spine architecture, results show that Firefly performs 62.4%, 54%, 68.6%, and 71.8% less latency for the applications Conjugate Gradient (CG), Multi-Grid (MG), Multiple Instruction Lattice Computation (MILC), and Miniature Molecular Dynamics (MINI_MD), respectively. Moreover, Firefly can save 56.4% cost and 65.7% power consumption, respectively, with respect to Leaf-Spine when both support around 10,000 blades.</description><subject>Blades</subject><subject>Computation</subject><subject>Cost and power consumption</subject><subject>Fast optical switch</subject><subject>Fireflies</subject><subject>Flow control</subject><subject>High performance computing</subject><subject>Infrastructure</subject><subject>Molecular dynamics</subject><subject>Multiplexing</subject><subject>Network architecture</subject><subject>Network latency</subject><subject>Optical communication</subject><subject>Optical flow (image analysis)</subject><subject>Power consumption</subject><subject>Reconfiguration</subject><subject>Switches</subject><subject>Topology</subject><issn>1389-1286</issn><issn>1872-7069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosouH78Aw8Bz12TNG2TiyCLX7CwFz2HNJ1sU3abmqQr_nuzVAQvnmYY3nlm3jfLbgheEkyqu36p3X6AuKSYkjTiBRMn2YLwmuY1rsRp6gsuckJ5dZ5dhNBjjBmjfJGFzYBiB2gEb5zfq0EDssMBQrRbFa0bkDNIIaNCRG6MVqsdCp826g4CalSA9nfc2W33h5OeGqdoh20iGp8IftJx8nCVnRm1C3D9Uy-z96fHt9VLvt48v64e1rkuChZzZhSwljIuas0YbyjGRW0o55o2pWjLsqUEM2KUUG0FmClWgmgZCFFhXDa4uMxuZ-7o3ceULMneTX5IJyUthSCkwgVNKjartHcheDBy9Hav_JckWB7jlb2c45XHeOUcb1q7n9cgOThY8DJoC8l2az3oKFtn_wd8A1sDhx8</recordid><startdate>20211024</startdate><enddate>20211024</enddate><creator>Yan, Fulong</creator><creator>Meyer, Hugo</creator><creator>Yuan, Changshun</creator><creator>Xue, Xuwei</creator><creator>Pan, Bitao</creator><creator>Guo, Xiaotao</creator><creator>Calabretta, Nicola</creator><creator>Xie, Chongjin</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9106-2538</orcidid></search><sort><creationdate>20211024</creationdate><title>On the performance investigation of a fast optical switches based optical high performance computing infrastructure</title><author>Yan, Fulong ; Meyer, Hugo ; Yuan, Changshun ; Xue, Xuwei ; Pan, Bitao ; Guo, Xiaotao ; Calabretta, Nicola ; Xie, Chongjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-4fae4d24897c448b20037f288c2b59d55d21041fa9ad6e04a45e9d4e996005b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blades</topic><topic>Computation</topic><topic>Cost and power consumption</topic><topic>Fast optical switch</topic><topic>Fireflies</topic><topic>Flow control</topic><topic>High performance computing</topic><topic>Infrastructure</topic><topic>Molecular dynamics</topic><topic>Multiplexing</topic><topic>Network architecture</topic><topic>Network latency</topic><topic>Optical communication</topic><topic>Optical flow (image analysis)</topic><topic>Power consumption</topic><topic>Reconfiguration</topic><topic>Switches</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Fulong</creatorcontrib><creatorcontrib>Meyer, Hugo</creatorcontrib><creatorcontrib>Yuan, Changshun</creatorcontrib><creatorcontrib>Xue, Xuwei</creatorcontrib><creatorcontrib>Pan, Bitao</creatorcontrib><creatorcontrib>Guo, Xiaotao</creatorcontrib><creatorcontrib>Calabretta, Nicola</creatorcontrib><creatorcontrib>Xie, Chongjin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Fulong</au><au>Meyer, Hugo</au><au>Yuan, Changshun</au><au>Xue, Xuwei</au><au>Pan, Bitao</au><au>Guo, Xiaotao</au><au>Calabretta, Nicola</au><au>Xie, Chongjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the performance investigation of a fast optical switches based optical high performance computing infrastructure</atitle><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle><date>2021-10-24</date><risdate>2021</risdate><volume>198</volume><spage>108349</spage><pages>108349-</pages><artnum>108349</artnum><issn>1389-1286</issn><eissn>1872-7069</eissn><abstract>Optical networks based on fast optical switches (FOSes) could potentially solve the latency, bandwidth, cost and power consumption challenges in current electrical switches (ESes) based high performance computing (HPC) networks. In this work, we present a novel HPC network which employs distributed FOS interconnecting by removing ES (Firefly). In Firefly, Dragonfly topology is adopted for the inter-group connection of blades, while the intra-group connection of blades is implemented by FOS with fast optical flow control. The Firefly exploits the wavelength, space, and time switching domain with nanoseconds reconfiguration time of the FOS to achieve efficient statistical multiplexing operation. We numerically investigate the Firefly performance with real HPC traffic traces collected by running multiple computing applications in MareNostrum 3 HPC infrastructure with Leaf-Spine architecture. Compared with Leaf Spine architecture, results show that Firefly performs 62.4%, 54%, 68.6%, and 71.8% less latency for the applications Conjugate Gradient (CG), Multi-Grid (MG), Multiple Instruction Lattice Computation (MILC), and Miniature Molecular Dynamics (MINI_MD), respectively. Moreover, Firefly can save 56.4% cost and 65.7% power consumption, respectively, with respect to Leaf-Spine when both support around 10,000 blades.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.comnet.2021.108349</doi><orcidid>https://orcid.org/0000-0001-9106-2538</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1389-1286 |
ispartof | Computer networks (Amsterdam, Netherlands : 1999), 2021-10, Vol.198, p.108349, Article 108349 |
issn | 1389-1286 1872-7069 |
language | eng |
recordid | cdi_proquest_journals_2599116032 |
source | Elsevier ScienceDirect Journals |
subjects | Blades Computation Cost and power consumption Fast optical switch Fireflies Flow control High performance computing Infrastructure Molecular dynamics Multiplexing Network architecture Network latency Optical communication Optical flow (image analysis) Power consumption Reconfiguration Switches Topology |
title | On the performance investigation of a fast optical switches based optical high performance computing infrastructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20performance%20investigation%20of%20a%20fast%20optical%20switches%20based%20optical%20high%20performance%20computing%20infrastructure&rft.jtitle=Computer%20networks%20(Amsterdam,%20Netherlands%20:%201999)&rft.au=Yan,%20Fulong&rft.date=2021-10-24&rft.volume=198&rft.spage=108349&rft.pages=108349-&rft.artnum=108349&rft.issn=1389-1286&rft.eissn=1872-7069&rft_id=info:doi/10.1016/j.comnet.2021.108349&rft_dat=%3Cproquest_cross%3E2599116032%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599116032&rft_id=info:pmid/&rft_els_id=S1389128621003418&rfr_iscdi=true |