On the performance investigation of a fast optical switches based optical high performance computing infrastructure

Optical networks based on fast optical switches (FOSes) could potentially solve the latency, bandwidth, cost and power consumption challenges in current electrical switches (ESes) based high performance computing (HPC) networks. In this work, we present a novel HPC network which employs distributed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer networks (Amsterdam, Netherlands : 1999) Netherlands : 1999), 2021-10, Vol.198, p.108349, Article 108349
Hauptverfasser: Yan, Fulong, Meyer, Hugo, Yuan, Changshun, Xue, Xuwei, Pan, Bitao, Guo, Xiaotao, Calabretta, Nicola, Xie, Chongjin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 108349
container_title Computer networks (Amsterdam, Netherlands : 1999)
container_volume 198
creator Yan, Fulong
Meyer, Hugo
Yuan, Changshun
Xue, Xuwei
Pan, Bitao
Guo, Xiaotao
Calabretta, Nicola
Xie, Chongjin
description Optical networks based on fast optical switches (FOSes) could potentially solve the latency, bandwidth, cost and power consumption challenges in current electrical switches (ESes) based high performance computing (HPC) networks. In this work, we present a novel HPC network which employs distributed FOS interconnecting by removing ES (Firefly). In Firefly, Dragonfly topology is adopted for the inter-group connection of blades, while the intra-group connection of blades is implemented by FOS with fast optical flow control. The Firefly exploits the wavelength, space, and time switching domain with nanoseconds reconfiguration time of the FOS to achieve efficient statistical multiplexing operation. We numerically investigate the Firefly performance with real HPC traffic traces collected by running multiple computing applications in MareNostrum 3 HPC infrastructure with Leaf-Spine architecture. Compared with Leaf Spine architecture, results show that Firefly performs 62.4%, 54%, 68.6%, and 71.8% less latency for the applications Conjugate Gradient (CG), Multi-Grid (MG), Multiple Instruction Lattice Computation (MILC), and Miniature Molecular Dynamics (MINI_MD), respectively. Moreover, Firefly can save 56.4% cost and 65.7% power consumption, respectively, with respect to Leaf-Spine when both support around 10,000 blades.
doi_str_mv 10.1016/j.comnet.2021.108349
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599116032</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1389128621003418</els_id><sourcerecordid>2599116032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-4fae4d24897c448b20037f288c2b59d55d21041fa9ad6e04a45e9d4e996005b03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouH78Aw8Bz12TNG2TiyCLX7CwFz2HNJ1sU3abmqQr_nuzVAQvnmYY3nlm3jfLbgheEkyqu36p3X6AuKSYkjTiBRMn2YLwmuY1rsRp6gsuckJ5dZ5dhNBjjBmjfJGFzYBiB2gEb5zfq0EDssMBQrRbFa0bkDNIIaNCRG6MVqsdCp826g4CalSA9nfc2W33h5OeGqdoh20iGp8IftJx8nCVnRm1C3D9Uy-z96fHt9VLvt48v64e1rkuChZzZhSwljIuas0YbyjGRW0o55o2pWjLsqUEM2KUUG0FmClWgmgZCFFhXDa4uMxuZ-7o3ceULMneTX5IJyUthSCkwgVNKjartHcheDBy9Hav_JckWB7jlb2c45XHeOUcb1q7n9cgOThY8DJoC8l2az3oKFtn_wd8A1sDhx8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599116032</pqid></control><display><type>article</type><title>On the performance investigation of a fast optical switches based optical high performance computing infrastructure</title><source>Elsevier ScienceDirect Journals</source><creator>Yan, Fulong ; Meyer, Hugo ; Yuan, Changshun ; Xue, Xuwei ; Pan, Bitao ; Guo, Xiaotao ; Calabretta, Nicola ; Xie, Chongjin</creator><creatorcontrib>Yan, Fulong ; Meyer, Hugo ; Yuan, Changshun ; Xue, Xuwei ; Pan, Bitao ; Guo, Xiaotao ; Calabretta, Nicola ; Xie, Chongjin</creatorcontrib><description>Optical networks based on fast optical switches (FOSes) could potentially solve the latency, bandwidth, cost and power consumption challenges in current electrical switches (ESes) based high performance computing (HPC) networks. In this work, we present a novel HPC network which employs distributed FOS interconnecting by removing ES (Firefly). In Firefly, Dragonfly topology is adopted for the inter-group connection of blades, while the intra-group connection of blades is implemented by FOS with fast optical flow control. The Firefly exploits the wavelength, space, and time switching domain with nanoseconds reconfiguration time of the FOS to achieve efficient statistical multiplexing operation. We numerically investigate the Firefly performance with real HPC traffic traces collected by running multiple computing applications in MareNostrum 3 HPC infrastructure with Leaf-Spine architecture. Compared with Leaf Spine architecture, results show that Firefly performs 62.4%, 54%, 68.6%, and 71.8% less latency for the applications Conjugate Gradient (CG), Multi-Grid (MG), Multiple Instruction Lattice Computation (MILC), and Miniature Molecular Dynamics (MINI_MD), respectively. Moreover, Firefly can save 56.4% cost and 65.7% power consumption, respectively, with respect to Leaf-Spine when both support around 10,000 blades.</description><identifier>ISSN: 1389-1286</identifier><identifier>EISSN: 1872-7069</identifier><identifier>DOI: 10.1016/j.comnet.2021.108349</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Blades ; Computation ; Cost and power consumption ; Fast optical switch ; Fireflies ; Flow control ; High performance computing ; Infrastructure ; Molecular dynamics ; Multiplexing ; Network architecture ; Network latency ; Optical communication ; Optical flow (image analysis) ; Power consumption ; Reconfiguration ; Switches ; Topology</subject><ispartof>Computer networks (Amsterdam, Netherlands : 1999), 2021-10, Vol.198, p.108349, Article 108349</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Oct 24, 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-4fae4d24897c448b20037f288c2b59d55d21041fa9ad6e04a45e9d4e996005b03</citedby><cites>FETCH-LOGICAL-c334t-4fae4d24897c448b20037f288c2b59d55d21041fa9ad6e04a45e9d4e996005b03</cites><orcidid>0000-0001-9106-2538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1389128621003418$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Yan, Fulong</creatorcontrib><creatorcontrib>Meyer, Hugo</creatorcontrib><creatorcontrib>Yuan, Changshun</creatorcontrib><creatorcontrib>Xue, Xuwei</creatorcontrib><creatorcontrib>Pan, Bitao</creatorcontrib><creatorcontrib>Guo, Xiaotao</creatorcontrib><creatorcontrib>Calabretta, Nicola</creatorcontrib><creatorcontrib>Xie, Chongjin</creatorcontrib><title>On the performance investigation of a fast optical switches based optical high performance computing infrastructure</title><title>Computer networks (Amsterdam, Netherlands : 1999)</title><description>Optical networks based on fast optical switches (FOSes) could potentially solve the latency, bandwidth, cost and power consumption challenges in current electrical switches (ESes) based high performance computing (HPC) networks. In this work, we present a novel HPC network which employs distributed FOS interconnecting by removing ES (Firefly). In Firefly, Dragonfly topology is adopted for the inter-group connection of blades, while the intra-group connection of blades is implemented by FOS with fast optical flow control. The Firefly exploits the wavelength, space, and time switching domain with nanoseconds reconfiguration time of the FOS to achieve efficient statistical multiplexing operation. We numerically investigate the Firefly performance with real HPC traffic traces collected by running multiple computing applications in MareNostrum 3 HPC infrastructure with Leaf-Spine architecture. Compared with Leaf Spine architecture, results show that Firefly performs 62.4%, 54%, 68.6%, and 71.8% less latency for the applications Conjugate Gradient (CG), Multi-Grid (MG), Multiple Instruction Lattice Computation (MILC), and Miniature Molecular Dynamics (MINI_MD), respectively. Moreover, Firefly can save 56.4% cost and 65.7% power consumption, respectively, with respect to Leaf-Spine when both support around 10,000 blades.</description><subject>Blades</subject><subject>Computation</subject><subject>Cost and power consumption</subject><subject>Fast optical switch</subject><subject>Fireflies</subject><subject>Flow control</subject><subject>High performance computing</subject><subject>Infrastructure</subject><subject>Molecular dynamics</subject><subject>Multiplexing</subject><subject>Network architecture</subject><subject>Network latency</subject><subject>Optical communication</subject><subject>Optical flow (image analysis)</subject><subject>Power consumption</subject><subject>Reconfiguration</subject><subject>Switches</subject><subject>Topology</subject><issn>1389-1286</issn><issn>1872-7069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosouH78Aw8Bz12TNG2TiyCLX7CwFz2HNJ1sU3abmqQr_nuzVAQvnmYY3nlm3jfLbgheEkyqu36p3X6AuKSYkjTiBRMn2YLwmuY1rsRp6gsuckJ5dZ5dhNBjjBmjfJGFzYBiB2gEb5zfq0EDssMBQrRbFa0bkDNIIaNCRG6MVqsdCp826g4CalSA9nfc2W33h5OeGqdoh20iGp8IftJx8nCVnRm1C3D9Uy-z96fHt9VLvt48v64e1rkuChZzZhSwljIuas0YbyjGRW0o55o2pWjLsqUEM2KUUG0FmClWgmgZCFFhXDa4uMxuZ-7o3ceULMneTX5IJyUthSCkwgVNKjartHcheDBy9Hav_JckWB7jlb2c45XHeOUcb1q7n9cgOThY8DJoC8l2az3oKFtn_wd8A1sDhx8</recordid><startdate>20211024</startdate><enddate>20211024</enddate><creator>Yan, Fulong</creator><creator>Meyer, Hugo</creator><creator>Yuan, Changshun</creator><creator>Xue, Xuwei</creator><creator>Pan, Bitao</creator><creator>Guo, Xiaotao</creator><creator>Calabretta, Nicola</creator><creator>Xie, Chongjin</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9106-2538</orcidid></search><sort><creationdate>20211024</creationdate><title>On the performance investigation of a fast optical switches based optical high performance computing infrastructure</title><author>Yan, Fulong ; Meyer, Hugo ; Yuan, Changshun ; Xue, Xuwei ; Pan, Bitao ; Guo, Xiaotao ; Calabretta, Nicola ; Xie, Chongjin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-4fae4d24897c448b20037f288c2b59d55d21041fa9ad6e04a45e9d4e996005b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Blades</topic><topic>Computation</topic><topic>Cost and power consumption</topic><topic>Fast optical switch</topic><topic>Fireflies</topic><topic>Flow control</topic><topic>High performance computing</topic><topic>Infrastructure</topic><topic>Molecular dynamics</topic><topic>Multiplexing</topic><topic>Network architecture</topic><topic>Network latency</topic><topic>Optical communication</topic><topic>Optical flow (image analysis)</topic><topic>Power consumption</topic><topic>Reconfiguration</topic><topic>Switches</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Fulong</creatorcontrib><creatorcontrib>Meyer, Hugo</creatorcontrib><creatorcontrib>Yuan, Changshun</creatorcontrib><creatorcontrib>Xue, Xuwei</creatorcontrib><creatorcontrib>Pan, Bitao</creatorcontrib><creatorcontrib>Guo, Xiaotao</creatorcontrib><creatorcontrib>Calabretta, Nicola</creatorcontrib><creatorcontrib>Xie, Chongjin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Fulong</au><au>Meyer, Hugo</au><au>Yuan, Changshun</au><au>Xue, Xuwei</au><au>Pan, Bitao</au><au>Guo, Xiaotao</au><au>Calabretta, Nicola</au><au>Xie, Chongjin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the performance investigation of a fast optical switches based optical high performance computing infrastructure</atitle><jtitle>Computer networks (Amsterdam, Netherlands : 1999)</jtitle><date>2021-10-24</date><risdate>2021</risdate><volume>198</volume><spage>108349</spage><pages>108349-</pages><artnum>108349</artnum><issn>1389-1286</issn><eissn>1872-7069</eissn><abstract>Optical networks based on fast optical switches (FOSes) could potentially solve the latency, bandwidth, cost and power consumption challenges in current electrical switches (ESes) based high performance computing (HPC) networks. In this work, we present a novel HPC network which employs distributed FOS interconnecting by removing ES (Firefly). In Firefly, Dragonfly topology is adopted for the inter-group connection of blades, while the intra-group connection of blades is implemented by FOS with fast optical flow control. The Firefly exploits the wavelength, space, and time switching domain with nanoseconds reconfiguration time of the FOS to achieve efficient statistical multiplexing operation. We numerically investigate the Firefly performance with real HPC traffic traces collected by running multiple computing applications in MareNostrum 3 HPC infrastructure with Leaf-Spine architecture. Compared with Leaf Spine architecture, results show that Firefly performs 62.4%, 54%, 68.6%, and 71.8% less latency for the applications Conjugate Gradient (CG), Multi-Grid (MG), Multiple Instruction Lattice Computation (MILC), and Miniature Molecular Dynamics (MINI_MD), respectively. Moreover, Firefly can save 56.4% cost and 65.7% power consumption, respectively, with respect to Leaf-Spine when both support around 10,000 blades.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.comnet.2021.108349</doi><orcidid>https://orcid.org/0000-0001-9106-2538</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1389-1286
ispartof Computer networks (Amsterdam, Netherlands : 1999), 2021-10, Vol.198, p.108349, Article 108349
issn 1389-1286
1872-7069
language eng
recordid cdi_proquest_journals_2599116032
source Elsevier ScienceDirect Journals
subjects Blades
Computation
Cost and power consumption
Fast optical switch
Fireflies
Flow control
High performance computing
Infrastructure
Molecular dynamics
Multiplexing
Network architecture
Network latency
Optical communication
Optical flow (image analysis)
Power consumption
Reconfiguration
Switches
Topology
title On the performance investigation of a fast optical switches based optical high performance computing infrastructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20performance%20investigation%20of%20a%20fast%20optical%20switches%20based%20optical%20high%20performance%20computing%20infrastructure&rft.jtitle=Computer%20networks%20(Amsterdam,%20Netherlands%20:%201999)&rft.au=Yan,%20Fulong&rft.date=2021-10-24&rft.volume=198&rft.spage=108349&rft.pages=108349-&rft.artnum=108349&rft.issn=1389-1286&rft.eissn=1872-7069&rft_id=info:doi/10.1016/j.comnet.2021.108349&rft_dat=%3Cproquest_cross%3E2599116032%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599116032&rft_id=info:pmid/&rft_els_id=S1389128621003418&rfr_iscdi=true