Global strong solution to 3D full compressible magnetohydrodynamic flows with vacuum at infinity
In this paper, we consider the Cauchy problem of the full compressible magnetohydrodynamic equations in R 3 . When ‖ ρ 0 ‖ L 1 + ‖ H 0 ‖ L 2 is suitably small, we establish the global existence of the strong solution, where ρ 0 and H 0 represent the initial density and magnetic field respectively. O...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2022-02, Vol.73 (1), Article 13 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Zeitschrift für angewandte Mathematik und Physik |
container_volume | 73 |
creator | Hou, Xiaofeng Jiang, Mina Peng, Hongyun |
description | In this paper, we consider the Cauchy problem of the full compressible magnetohydrodynamic equations in
R
3
. When
‖
ρ
0
‖
L
1
+
‖
H
0
‖
L
2
is suitably small, we establish the global existence of the strong solution, where
ρ
0
and
H
0
represent the initial density and magnetic field respectively. Our result shows that the strong solution may have large oscillations and can contain vacuum states. |
doi_str_mv | 10.1007/s00033-021-01639-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599104545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599104545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d4d8696c6b3077b5111166aed2b12db3e7834b283b1fad054f216bf3fdf9cd7a3</originalsourceid><addsrcrecordid>eNp9kE1PAyEURYnRxFr9A65IXKMPmI_O0lStJk3c6BphgJZmBiowmvn3jtbEnW9zN-felxyELilcU4D6JgEA5wQYJUAr3pDxCM1owYA0wJtjNAMoCsJYXZ6is5R2E15T4DP0tuqCkh1OOQa_wSl0Q3bB4xwwv8N26Drchn4fTUpOdQb3cuNNDttRx6BHL3vXYtuFz4Q_Xd7iD9kOQ49lxs5b510ez9GJlV0yF785R68P9y_LR7J-Xj0tb9ek5bTJRBd6UTVVWykOda1KOl1VSaOZokwrbuoFLxRbcEWt1FAWltFKWW61bVpdSz5HV4fdfQzvg0lZ7MIQ_fRSsLJpKBRlUU4UO1BtDClFY8U-ul7GUVAQ3ybFwaSYTIofk2KcSvxQShPsNyb-Tf_T-gL4CXiX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599104545</pqid></control><display><type>article</type><title>Global strong solution to 3D full compressible magnetohydrodynamic flows with vacuum at infinity</title><source>SpringerLink Journals</source><creator>Hou, Xiaofeng ; Jiang, Mina ; Peng, Hongyun</creator><creatorcontrib>Hou, Xiaofeng ; Jiang, Mina ; Peng, Hongyun</creatorcontrib><description>In this paper, we consider the Cauchy problem of the full compressible magnetohydrodynamic equations in
R
3
. When
‖
ρ
0
‖
L
1
+
‖
H
0
‖
L
2
is suitably small, we establish the global existence of the strong solution, where
ρ
0
and
H
0
represent the initial density and magnetic field respectively. Our result shows that the strong solution may have large oscillations and can contain vacuum states.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-021-01639-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Cauchy problems ; Compressibility ; Engineering ; Fluid flow ; Magnetohydrodynamic equations ; Magnetohydrodynamic flow ; Magnetohydrodynamics ; Mathematical Methods in Physics ; Theoretical and Applied Mechanics ; Three dimensional flow</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2022-02, Vol.73 (1), Article 13</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d4d8696c6b3077b5111166aed2b12db3e7834b283b1fad054f216bf3fdf9cd7a3</citedby><cites>FETCH-LOGICAL-c319t-d4d8696c6b3077b5111166aed2b12db3e7834b283b1fad054f216bf3fdf9cd7a3</cites><orcidid>0000-0001-8508-4490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-021-01639-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-021-01639-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hou, Xiaofeng</creatorcontrib><creatorcontrib>Jiang, Mina</creatorcontrib><creatorcontrib>Peng, Hongyun</creatorcontrib><title>Global strong solution to 3D full compressible magnetohydrodynamic flows with vacuum at infinity</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>In this paper, we consider the Cauchy problem of the full compressible magnetohydrodynamic equations in
R
3
. When
‖
ρ
0
‖
L
1
+
‖
H
0
‖
L
2
is suitably small, we establish the global existence of the strong solution, where
ρ
0
and
H
0
represent the initial density and magnetic field respectively. Our result shows that the strong solution may have large oscillations and can contain vacuum states.</description><subject>Cauchy problems</subject><subject>Compressibility</subject><subject>Engineering</subject><subject>Fluid flow</subject><subject>Magnetohydrodynamic equations</subject><subject>Magnetohydrodynamic flow</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical Methods in Physics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Three dimensional flow</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEURYnRxFr9A65IXKMPmI_O0lStJk3c6BphgJZmBiowmvn3jtbEnW9zN-felxyELilcU4D6JgEA5wQYJUAr3pDxCM1owYA0wJtjNAMoCsJYXZ6is5R2E15T4DP0tuqCkh1OOQa_wSl0Q3bB4xwwv8N26Drchn4fTUpOdQb3cuNNDttRx6BHL3vXYtuFz4Q_Xd7iD9kOQ49lxs5b510ez9GJlV0yF785R68P9y_LR7J-Xj0tb9ek5bTJRBd6UTVVWykOda1KOl1VSaOZokwrbuoFLxRbcEWt1FAWltFKWW61bVpdSz5HV4fdfQzvg0lZ7MIQ_fRSsLJpKBRlUU4UO1BtDClFY8U-ul7GUVAQ3ybFwaSYTIofk2KcSvxQShPsNyb-Tf_T-gL4CXiX</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Hou, Xiaofeng</creator><creator>Jiang, Mina</creator><creator>Peng, Hongyun</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8508-4490</orcidid></search><sort><creationdate>20220201</creationdate><title>Global strong solution to 3D full compressible magnetohydrodynamic flows with vacuum at infinity</title><author>Hou, Xiaofeng ; Jiang, Mina ; Peng, Hongyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d4d8696c6b3077b5111166aed2b12db3e7834b283b1fad054f216bf3fdf9cd7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cauchy problems</topic><topic>Compressibility</topic><topic>Engineering</topic><topic>Fluid flow</topic><topic>Magnetohydrodynamic equations</topic><topic>Magnetohydrodynamic flow</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical Methods in Physics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Three dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Xiaofeng</creatorcontrib><creatorcontrib>Jiang, Mina</creatorcontrib><creatorcontrib>Peng, Hongyun</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Xiaofeng</au><au>Jiang, Mina</au><au>Peng, Hongyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global strong solution to 3D full compressible magnetohydrodynamic flows with vacuum at infinity</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>73</volume><issue>1</issue><artnum>13</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>In this paper, we consider the Cauchy problem of the full compressible magnetohydrodynamic equations in
R
3
. When
‖
ρ
0
‖
L
1
+
‖
H
0
‖
L
2
is suitably small, we establish the global existence of the strong solution, where
ρ
0
and
H
0
represent the initial density and magnetic field respectively. Our result shows that the strong solution may have large oscillations and can contain vacuum states.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-021-01639-y</doi><orcidid>https://orcid.org/0000-0001-8508-4490</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2275 |
ispartof | Zeitschrift für angewandte Mathematik und Physik, 2022-02, Vol.73 (1), Article 13 |
issn | 0044-2275 1420-9039 |
language | eng |
recordid | cdi_proquest_journals_2599104545 |
source | SpringerLink Journals |
subjects | Cauchy problems Compressibility Engineering Fluid flow Magnetohydrodynamic equations Magnetohydrodynamic flow Magnetohydrodynamics Mathematical Methods in Physics Theoretical and Applied Mechanics Three dimensional flow |
title | Global strong solution to 3D full compressible magnetohydrodynamic flows with vacuum at infinity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20strong%20solution%20to%203D%20full%20compressible%20magnetohydrodynamic%20flows%20with%20vacuum%20at%20infinity&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Hou,%20Xiaofeng&rft.date=2022-02-01&rft.volume=73&rft.issue=1&rft.artnum=13&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-021-01639-y&rft_dat=%3Cproquest_cross%3E2599104545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599104545&rft_id=info:pmid/&rfr_iscdi=true |