Global strong solution to 3D full compressible magnetohydrodynamic flows with vacuum at infinity

In this paper, we consider the Cauchy problem of the full compressible magnetohydrodynamic equations in R 3 . When ‖ ρ 0 ‖ L 1 + ‖ H 0 ‖ L 2 is suitably small, we establish the global existence of the strong solution, where ρ 0 and H 0 represent the initial density and magnetic field respectively. O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Physik 2022-02, Vol.73 (1), Article 13
Hauptverfasser: Hou, Xiaofeng, Jiang, Mina, Peng, Hongyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 73
creator Hou, Xiaofeng
Jiang, Mina
Peng, Hongyun
description In this paper, we consider the Cauchy problem of the full compressible magnetohydrodynamic equations in R 3 . When ‖ ρ 0 ‖ L 1 + ‖ H 0 ‖ L 2 is suitably small, we establish the global existence of the strong solution, where ρ 0 and H 0 represent the initial density and magnetic field respectively. Our result shows that the strong solution may have large oscillations and can contain vacuum states.
doi_str_mv 10.1007/s00033-021-01639-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599104545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599104545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d4d8696c6b3077b5111166aed2b12db3e7834b283b1fad054f216bf3fdf9cd7a3</originalsourceid><addsrcrecordid>eNp9kE1PAyEURYnRxFr9A65IXKMPmI_O0lStJk3c6BphgJZmBiowmvn3jtbEnW9zN-felxyELilcU4D6JgEA5wQYJUAr3pDxCM1owYA0wJtjNAMoCsJYXZ6is5R2E15T4DP0tuqCkh1OOQa_wSl0Q3bB4xwwv8N26Drchn4fTUpOdQb3cuNNDttRx6BHL3vXYtuFz4Q_Xd7iD9kOQ49lxs5b510ez9GJlV0yF785R68P9y_LR7J-Xj0tb9ek5bTJRBd6UTVVWykOda1KOl1VSaOZokwrbuoFLxRbcEWt1FAWltFKWW61bVpdSz5HV4fdfQzvg0lZ7MIQ_fRSsLJpKBRlUU4UO1BtDClFY8U-ul7GUVAQ3ybFwaSYTIofk2KcSvxQShPsNyb-Tf_T-gL4CXiX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599104545</pqid></control><display><type>article</type><title>Global strong solution to 3D full compressible magnetohydrodynamic flows with vacuum at infinity</title><source>SpringerLink Journals</source><creator>Hou, Xiaofeng ; Jiang, Mina ; Peng, Hongyun</creator><creatorcontrib>Hou, Xiaofeng ; Jiang, Mina ; Peng, Hongyun</creatorcontrib><description>In this paper, we consider the Cauchy problem of the full compressible magnetohydrodynamic equations in R 3 . When ‖ ρ 0 ‖ L 1 + ‖ H 0 ‖ L 2 is suitably small, we establish the global existence of the strong solution, where ρ 0 and H 0 represent the initial density and magnetic field respectively. Our result shows that the strong solution may have large oscillations and can contain vacuum states.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-021-01639-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Cauchy problems ; Compressibility ; Engineering ; Fluid flow ; Magnetohydrodynamic equations ; Magnetohydrodynamic flow ; Magnetohydrodynamics ; Mathematical Methods in Physics ; Theoretical and Applied Mechanics ; Three dimensional flow</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2022-02, Vol.73 (1), Article 13</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d4d8696c6b3077b5111166aed2b12db3e7834b283b1fad054f216bf3fdf9cd7a3</citedby><cites>FETCH-LOGICAL-c319t-d4d8696c6b3077b5111166aed2b12db3e7834b283b1fad054f216bf3fdf9cd7a3</cites><orcidid>0000-0001-8508-4490</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-021-01639-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-021-01639-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hou, Xiaofeng</creatorcontrib><creatorcontrib>Jiang, Mina</creatorcontrib><creatorcontrib>Peng, Hongyun</creatorcontrib><title>Global strong solution to 3D full compressible magnetohydrodynamic flows with vacuum at infinity</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>In this paper, we consider the Cauchy problem of the full compressible magnetohydrodynamic equations in R 3 . When ‖ ρ 0 ‖ L 1 + ‖ H 0 ‖ L 2 is suitably small, we establish the global existence of the strong solution, where ρ 0 and H 0 represent the initial density and magnetic field respectively. Our result shows that the strong solution may have large oscillations and can contain vacuum states.</description><subject>Cauchy problems</subject><subject>Compressibility</subject><subject>Engineering</subject><subject>Fluid flow</subject><subject>Magnetohydrodynamic equations</subject><subject>Magnetohydrodynamic flow</subject><subject>Magnetohydrodynamics</subject><subject>Mathematical Methods in Physics</subject><subject>Theoretical and Applied Mechanics</subject><subject>Three dimensional flow</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PAyEURYnRxFr9A65IXKMPmI_O0lStJk3c6BphgJZmBiowmvn3jtbEnW9zN-felxyELilcU4D6JgEA5wQYJUAr3pDxCM1owYA0wJtjNAMoCsJYXZ6is5R2E15T4DP0tuqCkh1OOQa_wSl0Q3bB4xwwv8N26Drchn4fTUpOdQb3cuNNDttRx6BHL3vXYtuFz4Q_Xd7iD9kOQ49lxs5b510ez9GJlV0yF785R68P9y_LR7J-Xj0tb9ek5bTJRBd6UTVVWykOda1KOl1VSaOZokwrbuoFLxRbcEWt1FAWltFKWW61bVpdSz5HV4fdfQzvg0lZ7MIQ_fRSsLJpKBRlUU4UO1BtDClFY8U-ul7GUVAQ3ybFwaSYTIofk2KcSvxQShPsNyb-Tf_T-gL4CXiX</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Hou, Xiaofeng</creator><creator>Jiang, Mina</creator><creator>Peng, Hongyun</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8508-4490</orcidid></search><sort><creationdate>20220201</creationdate><title>Global strong solution to 3D full compressible magnetohydrodynamic flows with vacuum at infinity</title><author>Hou, Xiaofeng ; Jiang, Mina ; Peng, Hongyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d4d8696c6b3077b5111166aed2b12db3e7834b283b1fad054f216bf3fdf9cd7a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cauchy problems</topic><topic>Compressibility</topic><topic>Engineering</topic><topic>Fluid flow</topic><topic>Magnetohydrodynamic equations</topic><topic>Magnetohydrodynamic flow</topic><topic>Magnetohydrodynamics</topic><topic>Mathematical Methods in Physics</topic><topic>Theoretical and Applied Mechanics</topic><topic>Three dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hou, Xiaofeng</creatorcontrib><creatorcontrib>Jiang, Mina</creatorcontrib><creatorcontrib>Peng, Hongyun</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hou, Xiaofeng</au><au>Jiang, Mina</au><au>Peng, Hongyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global strong solution to 3D full compressible magnetohydrodynamic flows with vacuum at infinity</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>73</volume><issue>1</issue><artnum>13</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>In this paper, we consider the Cauchy problem of the full compressible magnetohydrodynamic equations in R 3 . When ‖ ρ 0 ‖ L 1 + ‖ H 0 ‖ L 2 is suitably small, we establish the global existence of the strong solution, where ρ 0 and H 0 represent the initial density and magnetic field respectively. Our result shows that the strong solution may have large oscillations and can contain vacuum states.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-021-01639-y</doi><orcidid>https://orcid.org/0000-0001-8508-4490</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2022-02, Vol.73 (1), Article 13
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_journals_2599104545
source SpringerLink Journals
subjects Cauchy problems
Compressibility
Engineering
Fluid flow
Magnetohydrodynamic equations
Magnetohydrodynamic flow
Magnetohydrodynamics
Mathematical Methods in Physics
Theoretical and Applied Mechanics
Three dimensional flow
title Global strong solution to 3D full compressible magnetohydrodynamic flows with vacuum at infinity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20strong%20solution%20to%203D%20full%20compressible%20magnetohydrodynamic%20flows%20with%20vacuum%20at%20infinity&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Hou,%20Xiaofeng&rft.date=2022-02-01&rft.volume=73&rft.issue=1&rft.artnum=13&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-021-01639-y&rft_dat=%3Cproquest_cross%3E2599104545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599104545&rft_id=info:pmid/&rfr_iscdi=true