A multi-objective robust optimization model to design sustainable sugarcane-to-biofuel supply network: the case of study
Nowadays, oil price fluctuation, fossil fuel depletion, and the potential environmental impact of these energy resources are highly threatening the global economy. Developing renewable resources, hence, is quite unavoidable. Sugarcane, as a source of renewable energy, can be converted to bioethanol....
Gespeichert in:
Veröffentlicht in: | Biomass conversion and biorefinery 2021-12, Vol.11 (6), p.2521-2542 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2542 |
---|---|
container_issue | 6 |
container_start_page | 2521 |
container_title | Biomass conversion and biorefinery |
container_volume | 11 |
creator | Gilani, H. Sahebi, H. |
description | Nowadays, oil price fluctuation, fossil fuel depletion, and the potential environmental impact of these energy resources are highly threatening the global economy. Developing renewable resources, hence, is quite unavoidable. Sugarcane, as a source of renewable energy, can be converted to bioethanol. Therefore, this study has proposed a mixed-integer linear programming to design an international network of the sugarcane-to-biofuel supply chain. To deal with uncertainty, the robust optimization approach is employed in order to maximize the profit earned from the bioethanol sales at the foreign/domestic markets, minimize the environmental impacts caused by these supply chain activities, and maximize this network generated employment. The multi-echelon supply chain model involves different production/storage capacities, bio-refineries technologies, and transportation modes. This supply chain configuration has specified the optimal production capacity/technology, the appropriate transportation mode in each route, and the bio-refineries’ development capacities. The biofuel export price and the domestic/foreign markets’ demands are among the SC uncertain parameters addressed through the robust possibilistic programming. Finally, the tri-objective model has been solved using an approach that considers the decision maker’s preferences; the model performance has been verified by a case study performed in Iran. To verify the robust model’s efficiency, the DLP realization model is also formulated.
Graphical abstract
The structure of global sugarcane-to-biofuel supply chain network. |
doi_str_mv | 10.1007/s13399-020-00639-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599104128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599104128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-efb752d2d4c5bfb9c765bbaa1a604db6841b9d3074ececccdf522becd09133733</originalsourceid><addsrcrecordid>eNp9kMtKBDEQRRtRUNQfcBVwHa0k_Yo7EV8guNF1yKN6zNjTaZO0On69rSO6c1V3ce4tOEVxxOCEATSniQkhJQUOFKAWkrZbxR5nEmjdcrH9m1m1WxymtAQALhrRCtgr3s_Jauqzp8Es0Wb_iiQGM6VMwpj9yn_o7MNAVsFhT3IgDpNfDCTNhPaDNj3OeaGj1QPSHKjxoZtmNE3j2K_JgPktxOczkp-QWJ2QhI6kPLn1QbHT6T7h4c_dLx6vLh8ubujd_fXtxfkdtYLJTLEzTcUdd6WtTGekberKGK2ZrqF0pm5LZqQT0JRo0Vrruopzg9aBnK00QuwXx5vdMYaXCVNWyzDFYX6peCUlg5Lxdqb4hrIxpBSxU2P0Kx3XioH6kqw2ktUsWX1LVl8lsSmlGR4WGP-m_2l9Anj3gqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599104128</pqid></control><display><type>article</type><title>A multi-objective robust optimization model to design sustainable sugarcane-to-biofuel supply network: the case of study</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gilani, H. ; Sahebi, H.</creator><creatorcontrib>Gilani, H. ; Sahebi, H.</creatorcontrib><description>Nowadays, oil price fluctuation, fossil fuel depletion, and the potential environmental impact of these energy resources are highly threatening the global economy. Developing renewable resources, hence, is quite unavoidable. Sugarcane, as a source of renewable energy, can be converted to bioethanol. Therefore, this study has proposed a mixed-integer linear programming to design an international network of the sugarcane-to-biofuel supply chain. To deal with uncertainty, the robust optimization approach is employed in order to maximize the profit earned from the bioethanol sales at the foreign/domestic markets, minimize the environmental impacts caused by these supply chain activities, and maximize this network generated employment. The multi-echelon supply chain model involves different production/storage capacities, bio-refineries technologies, and transportation modes. This supply chain configuration has specified the optimal production capacity/technology, the appropriate transportation mode in each route, and the bio-refineries’ development capacities. The biofuel export price and the domestic/foreign markets’ demands are among the SC uncertain parameters addressed through the robust possibilistic programming. Finally, the tri-objective model has been solved using an approach that considers the decision maker’s preferences; the model performance has been verified by a case study performed in Iran. To verify the robust model’s efficiency, the DLP realization model is also formulated.
Graphical abstract
The structure of global sugarcane-to-biofuel supply chain network.</description><identifier>ISSN: 2190-6815</identifier><identifier>EISSN: 2190-6823</identifier><identifier>DOI: 10.1007/s13399-020-00639-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biodiesel fuels ; Biofuels ; Biotechnology ; Decision making ; Depletion ; Design optimization ; Energy ; Energy sources ; Environmental impact ; Fossil fuels ; Global economy ; Impact analysis ; Integer programming ; Linear programming ; Mixed integer ; Multiple objective analysis ; Optimization models ; Original Article ; Parameter robustness ; Parameter uncertainty ; Refineries ; Renewable and Green Energy ; Renewable resources ; Robustness ; Sugarcane ; Supply chains ; Transportation</subject><ispartof>Biomass conversion and biorefinery, 2021-12, Vol.11 (6), p.2521-2542</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020</rights><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2020.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-efb752d2d4c5bfb9c765bbaa1a604db6841b9d3074ececccdf522becd09133733</citedby><cites>FETCH-LOGICAL-c319t-efb752d2d4c5bfb9c765bbaa1a604db6841b9d3074ececccdf522becd09133733</cites><orcidid>0000-0002-0153-0420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13399-020-00639-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13399-020-00639-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gilani, H.</creatorcontrib><creatorcontrib>Sahebi, H.</creatorcontrib><title>A multi-objective robust optimization model to design sustainable sugarcane-to-biofuel supply network: the case of study</title><title>Biomass conversion and biorefinery</title><addtitle>Biomass Conv. Bioref</addtitle><description>Nowadays, oil price fluctuation, fossil fuel depletion, and the potential environmental impact of these energy resources are highly threatening the global economy. Developing renewable resources, hence, is quite unavoidable. Sugarcane, as a source of renewable energy, can be converted to bioethanol. Therefore, this study has proposed a mixed-integer linear programming to design an international network of the sugarcane-to-biofuel supply chain. To deal with uncertainty, the robust optimization approach is employed in order to maximize the profit earned from the bioethanol sales at the foreign/domestic markets, minimize the environmental impacts caused by these supply chain activities, and maximize this network generated employment. The multi-echelon supply chain model involves different production/storage capacities, bio-refineries technologies, and transportation modes. This supply chain configuration has specified the optimal production capacity/technology, the appropriate transportation mode in each route, and the bio-refineries’ development capacities. The biofuel export price and the domestic/foreign markets’ demands are among the SC uncertain parameters addressed through the robust possibilistic programming. Finally, the tri-objective model has been solved using an approach that considers the decision maker’s preferences; the model performance has been verified by a case study performed in Iran. To verify the robust model’s efficiency, the DLP realization model is also formulated.
Graphical abstract
The structure of global sugarcane-to-biofuel supply chain network.</description><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biotechnology</subject><subject>Decision making</subject><subject>Depletion</subject><subject>Design optimization</subject><subject>Energy</subject><subject>Energy sources</subject><subject>Environmental impact</subject><subject>Fossil fuels</subject><subject>Global economy</subject><subject>Impact analysis</subject><subject>Integer programming</subject><subject>Linear programming</subject><subject>Mixed integer</subject><subject>Multiple objective analysis</subject><subject>Optimization models</subject><subject>Original Article</subject><subject>Parameter robustness</subject><subject>Parameter uncertainty</subject><subject>Refineries</subject><subject>Renewable and Green Energy</subject><subject>Renewable resources</subject><subject>Robustness</subject><subject>Sugarcane</subject><subject>Supply chains</subject><subject>Transportation</subject><issn>2190-6815</issn><issn>2190-6823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKBDEQRRtRUNQfcBVwHa0k_Yo7EV8guNF1yKN6zNjTaZO0On69rSO6c1V3ce4tOEVxxOCEATSniQkhJQUOFKAWkrZbxR5nEmjdcrH9m1m1WxymtAQALhrRCtgr3s_Jauqzp8Es0Wb_iiQGM6VMwpj9yn_o7MNAVsFhT3IgDpNfDCTNhPaDNj3OeaGj1QPSHKjxoZtmNE3j2K_JgPktxOczkp-QWJ2QhI6kPLn1QbHT6T7h4c_dLx6vLh8ubujd_fXtxfkdtYLJTLEzTcUdd6WtTGekberKGK2ZrqF0pm5LZqQT0JRo0Vrruopzg9aBnK00QuwXx5vdMYaXCVNWyzDFYX6peCUlg5Lxdqb4hrIxpBSxU2P0Kx3XioH6kqw2ktUsWX1LVl8lsSmlGR4WGP-m_2l9Anj3gqA</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Gilani, H.</creator><creator>Sahebi, H.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0153-0420</orcidid></search><sort><creationdate>20211201</creationdate><title>A multi-objective robust optimization model to design sustainable sugarcane-to-biofuel supply network: the case of study</title><author>Gilani, H. ; Sahebi, H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-efb752d2d4c5bfb9c765bbaa1a604db6841b9d3074ececccdf522becd09133733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biotechnology</topic><topic>Decision making</topic><topic>Depletion</topic><topic>Design optimization</topic><topic>Energy</topic><topic>Energy sources</topic><topic>Environmental impact</topic><topic>Fossil fuels</topic><topic>Global economy</topic><topic>Impact analysis</topic><topic>Integer programming</topic><topic>Linear programming</topic><topic>Mixed integer</topic><topic>Multiple objective analysis</topic><topic>Optimization models</topic><topic>Original Article</topic><topic>Parameter robustness</topic><topic>Parameter uncertainty</topic><topic>Refineries</topic><topic>Renewable and Green Energy</topic><topic>Renewable resources</topic><topic>Robustness</topic><topic>Sugarcane</topic><topic>Supply chains</topic><topic>Transportation</topic><toplevel>online_resources</toplevel><creatorcontrib>Gilani, H.</creatorcontrib><creatorcontrib>Sahebi, H.</creatorcontrib><collection>CrossRef</collection><jtitle>Biomass conversion and biorefinery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilani, H.</au><au>Sahebi, H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-objective robust optimization model to design sustainable sugarcane-to-biofuel supply network: the case of study</atitle><jtitle>Biomass conversion and biorefinery</jtitle><stitle>Biomass Conv. Bioref</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>11</volume><issue>6</issue><spage>2521</spage><epage>2542</epage><pages>2521-2542</pages><issn>2190-6815</issn><eissn>2190-6823</eissn><abstract>Nowadays, oil price fluctuation, fossil fuel depletion, and the potential environmental impact of these energy resources are highly threatening the global economy. Developing renewable resources, hence, is quite unavoidable. Sugarcane, as a source of renewable energy, can be converted to bioethanol. Therefore, this study has proposed a mixed-integer linear programming to design an international network of the sugarcane-to-biofuel supply chain. To deal with uncertainty, the robust optimization approach is employed in order to maximize the profit earned from the bioethanol sales at the foreign/domestic markets, minimize the environmental impacts caused by these supply chain activities, and maximize this network generated employment. The multi-echelon supply chain model involves different production/storage capacities, bio-refineries technologies, and transportation modes. This supply chain configuration has specified the optimal production capacity/technology, the appropriate transportation mode in each route, and the bio-refineries’ development capacities. The biofuel export price and the domestic/foreign markets’ demands are among the SC uncertain parameters addressed through the robust possibilistic programming. Finally, the tri-objective model has been solved using an approach that considers the decision maker’s preferences; the model performance has been verified by a case study performed in Iran. To verify the robust model’s efficiency, the DLP realization model is also formulated.
Graphical abstract
The structure of global sugarcane-to-biofuel supply chain network.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13399-020-00639-8</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-0153-0420</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2190-6815 |
ispartof | Biomass conversion and biorefinery, 2021-12, Vol.11 (6), p.2521-2542 |
issn | 2190-6815 2190-6823 |
language | eng |
recordid | cdi_proquest_journals_2599104128 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biodiesel fuels Biofuels Biotechnology Decision making Depletion Design optimization Energy Energy sources Environmental impact Fossil fuels Global economy Impact analysis Integer programming Linear programming Mixed integer Multiple objective analysis Optimization models Original Article Parameter robustness Parameter uncertainty Refineries Renewable and Green Energy Renewable resources Robustness Sugarcane Supply chains Transportation |
title | A multi-objective robust optimization model to design sustainable sugarcane-to-biofuel supply network: the case of study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-objective%20robust%20optimization%20model%20to%20design%20sustainable%20sugarcane-to-biofuel%20supply%20network:%20the%20case%20of%20study&rft.jtitle=Biomass%20conversion%20and%20biorefinery&rft.au=Gilani,%20H.&rft.date=2021-12-01&rft.volume=11&rft.issue=6&rft.spage=2521&rft.epage=2542&rft.pages=2521-2542&rft.issn=2190-6815&rft.eissn=2190-6823&rft_id=info:doi/10.1007/s13399-020-00639-8&rft_dat=%3Cproquest_cross%3E2599104128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599104128&rft_id=info:pmid/&rfr_iscdi=true |