Structure and Properties of WC–Co Composites with Different CrB2 Concentrations, Sintered by Vacuum Hot Pressing, for Drill Bits

We prepared samples of composites based on tungsten carbide and cobalt with different concentrations (0–10 wt %) of chromium diboride, 10 mm in diameter and 8 mm in thickness, by cold pressing followed by vacuum hot pressing. A comprehensive study of composites using conventional methods of testing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of superhard materials 2021-09, Vol.43 (5), p.344-354
Hauptverfasser: Ratov, B. T., Bondarenko, M. O., Mechnik, V. A., Strelchuk, V. V., Prikhna, T. A., Kolodnitskyi, V. M., Nikolenko, A. S., Lytvyn, P. M., Danylenko, I. M., Moshchil, V. E., Gevorkyan, E. S., Kosminov, A. S., Borash, A. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 354
container_issue 5
container_start_page 344
container_title Journal of superhard materials
container_volume 43
creator Ratov, B. T.
Bondarenko, M. O.
Mechnik, V. A.
Strelchuk, V. V.
Prikhna, T. A.
Kolodnitskyi, V. M.
Nikolenko, A. S.
Lytvyn, P. M.
Danylenko, I. M.
Moshchil, V. E.
Gevorkyan, E. S.
Kosminov, A. S.
Borash, A. R.
description We prepared samples of composites based on tungsten carbide and cobalt with different concentrations (0–10 wt %) of chromium diboride, 10 mm in diameter and 8 mm in thickness, by cold pressing followed by vacuum hot pressing. A comprehensive study of composites using conventional methods of testing mechanical properties, combined with digital optical microscopy, transmission microscopy, and scanning atomic force microscopy, revealed stable correlations between the concentration of CrB 2 additive with the average WC grain size and microstructure parameters, hardness, and fracture toughness of the composites. A coarse-grained structure is observed in WC–6Co (wt %) composites, with direct contact of WC grains and large regions of a cobalt binder. The introduction of CrB 2 into the composite, on the contrary, ensures the formation of thin (~100 nm) and extended layers of a cobalt binder, even between fine WC grains. The CrB 2 additive yields a finer-grained structure, the parameters of which can be purposefully controlled by changing the additive concentration. The addition of 4 wt % of CrB 2 into the composite leads to a more than twofold increase in fracture toughness, that is, from 4.4 to 9.8 MPa m 1/2 , with a slight decrease in hardness from 15.1 to 13.0 GPa. With a further increase in the CrB 2 concentration from 4 to 10 wt %, fracture toughness and hardness gradually decrease.
doi_str_mv 10.3103/S1063457621050051
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2599104126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2599104126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e00c038e8875d772be3463cdea6297c230063f9e8b2e8b2e1dcc441d819e6daa3</originalsourceid><addsrcrecordid>eNp1UElLAzEUDqJgrf4AbwGvHc0yW452XCoUFOpyHNJMpqa0SX3JIL2Jf8F_6C8xtYIH8fB4y7c83kPomJJTTgk_m1CS8zQrckZJRkhGd1CPCp4mIiXlbqwjnGzwfXTg_TwyMsGLHnqfBOhU6EBjaRt8B26lIRjtsWvxU_X59lE5XLnlynkT4vTVhGd8YdpWg7YBVzBkEbYqNiCDcdYP8MTYEOEGT9f4UaquW-KRC9Fbe2_sbIBbB_gCzGKBhyb4Q7TXyoXXRz-5jx6uLu-rUTK-vb6pzseJ4jQPiSZEEV7qsiyypijYVPM056rRMmeiUIyTeGIrdDll30EbpdKUNiUVOm-k5H10svVdgXvptA_13HVg48qaZUJQklKWRxbdshQ470G39QrMUsK6pqTevLr-8-qoYVuNj1w70_Dr_L_oC4FogVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599104126</pqid></control><display><type>article</type><title>Structure and Properties of WC–Co Composites with Different CrB2 Concentrations, Sintered by Vacuum Hot Pressing, for Drill Bits</title><source>SpringerNature Journals</source><creator>Ratov, B. T. ; Bondarenko, M. O. ; Mechnik, V. A. ; Strelchuk, V. V. ; Prikhna, T. A. ; Kolodnitskyi, V. M. ; Nikolenko, A. S. ; Lytvyn, P. M. ; Danylenko, I. M. ; Moshchil, V. E. ; Gevorkyan, E. S. ; Kosminov, A. S. ; Borash, A. R.</creator><creatorcontrib>Ratov, B. T. ; Bondarenko, M. O. ; Mechnik, V. A. ; Strelchuk, V. V. ; Prikhna, T. A. ; Kolodnitskyi, V. M. ; Nikolenko, A. S. ; Lytvyn, P. M. ; Danylenko, I. M. ; Moshchil, V. E. ; Gevorkyan, E. S. ; Kosminov, A. S. ; Borash, A. R.</creatorcontrib><description>We prepared samples of composites based on tungsten carbide and cobalt with different concentrations (0–10 wt %) of chromium diboride, 10 mm in diameter and 8 mm in thickness, by cold pressing followed by vacuum hot pressing. A comprehensive study of composites using conventional methods of testing mechanical properties, combined with digital optical microscopy, transmission microscopy, and scanning atomic force microscopy, revealed stable correlations between the concentration of CrB 2 additive with the average WC grain size and microstructure parameters, hardness, and fracture toughness of the composites. A coarse-grained structure is observed in WC–6Co (wt %) composites, with direct contact of WC grains and large regions of a cobalt binder. The introduction of CrB 2 into the composite, on the contrary, ensures the formation of thin (~100 nm) and extended layers of a cobalt binder, even between fine WC grains. The CrB 2 additive yields a finer-grained structure, the parameters of which can be purposefully controlled by changing the additive concentration. The addition of 4 wt % of CrB 2 into the composite leads to a more than twofold increase in fracture toughness, that is, from 4.4 to 9.8 MPa m 1/2 , with a slight decrease in hardness from 15.1 to 13.0 GPa. With a further increase in the CrB 2 concentration from 4 to 10 wt %, fracture toughness and hardness gradually decrease.</description><identifier>ISSN: 1063-4576</identifier><identifier>EISSN: 1934-9408</identifier><identifier>DOI: 10.3103/S1063457621050051</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Atomic force microscopy ; Chemistry ; Chemistry and Materials Science ; Chromium borides ; Cobalt ; Cold pressing ; Composite materials ; Diameters ; Drill bits ; Fracture toughness ; Grain size ; Hardness ; Hot pressing ; Mechanical properties ; Microscopy ; Optical microscopy ; Optical properties ; Parameters ; Physical Chemistry ; Production ; Properties ; Structure ; Tungsten carbide</subject><ispartof>Journal of superhard materials, 2021-09, Vol.43 (5), p.344-354</ispartof><rights>Allerton Press, Inc. 2021. ISSN 1063-4576, Journal of Superhard Materials, 2021, Vol. 43, No. 5, pp. 344–354. © Allerton Press, Inc., 2021. Russian Text © The Author(s), 2021, published in Sverkhtverdye Materialy, 2021, Vol. 43, No. 5, pp. 49–63.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e00c038e8875d772be3463cdea6297c230063f9e8b2e8b2e1dcc441d819e6daa3</citedby><cites>FETCH-LOGICAL-c316t-e00c038e8875d772be3463cdea6297c230063f9e8b2e8b2e1dcc441d819e6daa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1063457621050051$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1063457621050051$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ratov, B. T.</creatorcontrib><creatorcontrib>Bondarenko, M. O.</creatorcontrib><creatorcontrib>Mechnik, V. A.</creatorcontrib><creatorcontrib>Strelchuk, V. V.</creatorcontrib><creatorcontrib>Prikhna, T. A.</creatorcontrib><creatorcontrib>Kolodnitskyi, V. M.</creatorcontrib><creatorcontrib>Nikolenko, A. S.</creatorcontrib><creatorcontrib>Lytvyn, P. M.</creatorcontrib><creatorcontrib>Danylenko, I. M.</creatorcontrib><creatorcontrib>Moshchil, V. E.</creatorcontrib><creatorcontrib>Gevorkyan, E. S.</creatorcontrib><creatorcontrib>Kosminov, A. S.</creatorcontrib><creatorcontrib>Borash, A. R.</creatorcontrib><title>Structure and Properties of WC–Co Composites with Different CrB2 Concentrations, Sintered by Vacuum Hot Pressing, for Drill Bits</title><title>Journal of superhard materials</title><addtitle>J. Superhard Mater</addtitle><description>We prepared samples of composites based on tungsten carbide and cobalt with different concentrations (0–10 wt %) of chromium diboride, 10 mm in diameter and 8 mm in thickness, by cold pressing followed by vacuum hot pressing. A comprehensive study of composites using conventional methods of testing mechanical properties, combined with digital optical microscopy, transmission microscopy, and scanning atomic force microscopy, revealed stable correlations between the concentration of CrB 2 additive with the average WC grain size and microstructure parameters, hardness, and fracture toughness of the composites. A coarse-grained structure is observed in WC–6Co (wt %) composites, with direct contact of WC grains and large regions of a cobalt binder. The introduction of CrB 2 into the composite, on the contrary, ensures the formation of thin (~100 nm) and extended layers of a cobalt binder, even between fine WC grains. The CrB 2 additive yields a finer-grained structure, the parameters of which can be purposefully controlled by changing the additive concentration. The addition of 4 wt % of CrB 2 into the composite leads to a more than twofold increase in fracture toughness, that is, from 4.4 to 9.8 MPa m 1/2 , with a slight decrease in hardness from 15.1 to 13.0 GPa. With a further increase in the CrB 2 concentration from 4 to 10 wt %, fracture toughness and hardness gradually decrease.</description><subject>Atomic force microscopy</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chromium borides</subject><subject>Cobalt</subject><subject>Cold pressing</subject><subject>Composite materials</subject><subject>Diameters</subject><subject>Drill bits</subject><subject>Fracture toughness</subject><subject>Grain size</subject><subject>Hardness</subject><subject>Hot pressing</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Optical microscopy</subject><subject>Optical properties</subject><subject>Parameters</subject><subject>Physical Chemistry</subject><subject>Production</subject><subject>Properties</subject><subject>Structure</subject><subject>Tungsten carbide</subject><issn>1063-4576</issn><issn>1934-9408</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1UElLAzEUDqJgrf4AbwGvHc0yW452XCoUFOpyHNJMpqa0SX3JIL2Jf8F_6C8xtYIH8fB4y7c83kPomJJTTgk_m1CS8zQrckZJRkhGd1CPCp4mIiXlbqwjnGzwfXTg_TwyMsGLHnqfBOhU6EBjaRt8B26lIRjtsWvxU_X59lE5XLnlynkT4vTVhGd8YdpWg7YBVzBkEbYqNiCDcdYP8MTYEOEGT9f4UaquW-KRC9Fbe2_sbIBbB_gCzGKBhyb4Q7TXyoXXRz-5jx6uLu-rUTK-vb6pzseJ4jQPiSZEEV7qsiyypijYVPM056rRMmeiUIyTeGIrdDll30EbpdKUNiUVOm-k5H10svVdgXvptA_13HVg48qaZUJQklKWRxbdshQ470G39QrMUsK6pqTevLr-8-qoYVuNj1w70_Dr_L_oC4FogVQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ratov, B. T.</creator><creator>Bondarenko, M. O.</creator><creator>Mechnik, V. A.</creator><creator>Strelchuk, V. V.</creator><creator>Prikhna, T. A.</creator><creator>Kolodnitskyi, V. M.</creator><creator>Nikolenko, A. S.</creator><creator>Lytvyn, P. M.</creator><creator>Danylenko, I. M.</creator><creator>Moshchil, V. E.</creator><creator>Gevorkyan, E. S.</creator><creator>Kosminov, A. S.</creator><creator>Borash, A. R.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210901</creationdate><title>Structure and Properties of WC–Co Composites with Different CrB2 Concentrations, Sintered by Vacuum Hot Pressing, for Drill Bits</title><author>Ratov, B. T. ; Bondarenko, M. O. ; Mechnik, V. A. ; Strelchuk, V. V. ; Prikhna, T. A. ; Kolodnitskyi, V. M. ; Nikolenko, A. S. ; Lytvyn, P. M. ; Danylenko, I. M. ; Moshchil, V. E. ; Gevorkyan, E. S. ; Kosminov, A. S. ; Borash, A. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e00c038e8875d772be3463cdea6297c230063f9e8b2e8b2e1dcc441d819e6daa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic force microscopy</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chromium borides</topic><topic>Cobalt</topic><topic>Cold pressing</topic><topic>Composite materials</topic><topic>Diameters</topic><topic>Drill bits</topic><topic>Fracture toughness</topic><topic>Grain size</topic><topic>Hardness</topic><topic>Hot pressing</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Optical microscopy</topic><topic>Optical properties</topic><topic>Parameters</topic><topic>Physical Chemistry</topic><topic>Production</topic><topic>Properties</topic><topic>Structure</topic><topic>Tungsten carbide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ratov, B. T.</creatorcontrib><creatorcontrib>Bondarenko, M. O.</creatorcontrib><creatorcontrib>Mechnik, V. A.</creatorcontrib><creatorcontrib>Strelchuk, V. V.</creatorcontrib><creatorcontrib>Prikhna, T. A.</creatorcontrib><creatorcontrib>Kolodnitskyi, V. M.</creatorcontrib><creatorcontrib>Nikolenko, A. S.</creatorcontrib><creatorcontrib>Lytvyn, P. M.</creatorcontrib><creatorcontrib>Danylenko, I. M.</creatorcontrib><creatorcontrib>Moshchil, V. E.</creatorcontrib><creatorcontrib>Gevorkyan, E. S.</creatorcontrib><creatorcontrib>Kosminov, A. S.</creatorcontrib><creatorcontrib>Borash, A. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of superhard materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ratov, B. T.</au><au>Bondarenko, M. O.</au><au>Mechnik, V. A.</au><au>Strelchuk, V. V.</au><au>Prikhna, T. A.</au><au>Kolodnitskyi, V. M.</au><au>Nikolenko, A. S.</au><au>Lytvyn, P. M.</au><au>Danylenko, I. M.</au><au>Moshchil, V. E.</au><au>Gevorkyan, E. S.</au><au>Kosminov, A. S.</au><au>Borash, A. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and Properties of WC–Co Composites with Different CrB2 Concentrations, Sintered by Vacuum Hot Pressing, for Drill Bits</atitle><jtitle>Journal of superhard materials</jtitle><stitle>J. Superhard Mater</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>43</volume><issue>5</issue><spage>344</spage><epage>354</epage><pages>344-354</pages><issn>1063-4576</issn><eissn>1934-9408</eissn><abstract>We prepared samples of composites based on tungsten carbide and cobalt with different concentrations (0–10 wt %) of chromium diboride, 10 mm in diameter and 8 mm in thickness, by cold pressing followed by vacuum hot pressing. A comprehensive study of composites using conventional methods of testing mechanical properties, combined with digital optical microscopy, transmission microscopy, and scanning atomic force microscopy, revealed stable correlations between the concentration of CrB 2 additive with the average WC grain size and microstructure parameters, hardness, and fracture toughness of the composites. A coarse-grained structure is observed in WC–6Co (wt %) composites, with direct contact of WC grains and large regions of a cobalt binder. The introduction of CrB 2 into the composite, on the contrary, ensures the formation of thin (~100 nm) and extended layers of a cobalt binder, even between fine WC grains. The CrB 2 additive yields a finer-grained structure, the parameters of which can be purposefully controlled by changing the additive concentration. The addition of 4 wt % of CrB 2 into the composite leads to a more than twofold increase in fracture toughness, that is, from 4.4 to 9.8 MPa m 1/2 , with a slight decrease in hardness from 15.1 to 13.0 GPa. With a further increase in the CrB 2 concentration from 4 to 10 wt %, fracture toughness and hardness gradually decrease.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1063457621050051</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-4576
ispartof Journal of superhard materials, 2021-09, Vol.43 (5), p.344-354
issn 1063-4576
1934-9408
language eng
recordid cdi_proquest_journals_2599104126
source SpringerNature Journals
subjects Atomic force microscopy
Chemistry
Chemistry and Materials Science
Chromium borides
Cobalt
Cold pressing
Composite materials
Diameters
Drill bits
Fracture toughness
Grain size
Hardness
Hot pressing
Mechanical properties
Microscopy
Optical microscopy
Optical properties
Parameters
Physical Chemistry
Production
Properties
Structure
Tungsten carbide
title Structure and Properties of WC–Co Composites with Different CrB2 Concentrations, Sintered by Vacuum Hot Pressing, for Drill Bits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A14%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20Properties%20of%20WC%E2%80%93Co%20Composites%20with%20Different%20CrB2%20Concentrations,%20Sintered%20by%20Vacuum%20Hot%20Pressing,%20for%20Drill%20Bits&rft.jtitle=Journal%20of%20superhard%20materials&rft.au=Ratov,%20B.%20T.&rft.date=2021-09-01&rft.volume=43&rft.issue=5&rft.spage=344&rft.epage=354&rft.pages=344-354&rft.issn=1063-4576&rft.eissn=1934-9408&rft_id=info:doi/10.3103/S1063457621050051&rft_dat=%3Cproquest_cross%3E2599104126%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2599104126&rft_id=info:pmid/&rfr_iscdi=true